Успевайте заказать остекление

ПО СТАРЫМ ЦЕНАМ!!!

Демонтаж старого балкона - бесплатно!

В каком из названных явлений происходит выделение энергии на балконе


В каком из названных явлений происходит выделение энергии? а) На балконе сохнет белье. б)...

Toggle navigation

Ответ
  • Имя пользователя или адрес электронной почты
  • Пароль
  • Запомнить

Деление ядер - Energy Education

Рис. 1. Модель реакции деления урана-235. [1] Обратите внимание, что это лишь одна из многих возможных реакций деления.

Деление ядра - это процесс расщепления ядер (обычно больших ядер). Когда большие ядра, такие как уран-235, делятся, выделяется энергия. [2] Высвобождается столько энергии, что наблюдается заметное уменьшение массы из-за эквивалентности массы и энергии. Это означает, что некоторая часть массы преобразуется в энергию.Количество массы, потерянной в процессе деления, равно примерно 3,20 × 10 −11 Дж энергии. Этот процесс деления обычно происходит, когда большое ядро, которое является относительно нестабильным (что означает, что в ядре существует некоторый дисбаланс между кулоновской силой и сильной ядерной силой), поражается тепловым нейтроном с низкой энергией . Помимо ядер меньшего размера, образующихся при делении, при делении также выделяются нейтроны.

Энрико Ферми первоначально расщепил ядра урана в 1934 году.Он считал, что определенные элементы могут быть получены путем бомбардировки урана нейтронами. Хотя он ожидал, что новые ядра будут иметь более крупные атомные номера, чем исходный уран, он обнаружил, что образовавшиеся ядра были радиоизотопами более легких элементов. [3] Эти результаты были правильно интерпретированы Лиз Мейтнер и Отто Фриш во время рождественских каникул. Чтобы прочитать эту очаровательную историю об истории ядерной науки, пожалуйста, прочтите эту статью.

Откуда берется энергия?

Огромная энергия, которая выделяется в результате этого расщепления, происходит из-за того, как сильно протоны отталкивают друг друга с помощью кулоновской силы, которую эта сила едва удерживает вместе.Каждый протон толкает каждый другой протон с силой около 20 Н, примерно с силой руки, лежащей на коленях человека. Это невероятно огромная сила для таких маленьких частиц. Эта огромная сила на небольшом расстоянии приводит к изрядному количеству высвобождаемой энергии, которая достаточно велика, чтобы вызвать ощутимое уменьшение массы. Это означает, что общая масса каждого из осколков деления меньше массы исходного ядра. Эта недостающая масса называется дефектом массы. [4]

Удобно говорить о количестве энергии, которое связывает ядра вместе.Эту энергию связи имеют все ядра, кроме водорода (у которого всего 1 протон и нет нейтронов). Полезно подумать об энергии связи, доступной каждому нуклону, и это называется энергией связи на нуклон . По сути, это то, сколько энергии требуется на нуклон для отделения ядра. Продукты деления более стабильны, а это означает, что их труднее разделить. Поскольку энергия связи на нуклон для продуктов деления выше, их полная масса нуклонов ниже.Результат этой более высокой энергии связи и более низкой массы приводит к производству энергии. [4] По сути, дефект массы и энергия связи ядра - взаимозаменяемые термины.

Использование в производстве энергии

Деление более тяжелых элементов - экзотермическая реакция. Деление может дать до 200 миллионов эВ по сравнению с сжиганием угля, которое дает всего несколько эВ. Только из этого числа становится ясно, почему ядерное деление используется в производстве электроэнергии. Кроме того, количество выделяемой энергии намного эффективнее на массу, чем у угля. [3] Основная причина того, что ядерное деление используется для выработки электроэнергии, заключается в том, что при надлежащем замедлении и использовании управляющих стержней выброшенные свободные нейтроны из реакции деления могут затем снова вступить в реакцию с топливом. Затем это создает устойчивую цепную ядерную реакцию, которая высвобождает довольно постоянное количество энергии. Одним из недостатков использования деления как метода производства электричества является то, что дочерние ядра радиоактивны. Ниже приведено моделирование, показывающее, как нейтроны в реакторе вызывают события деления внутри пучка твэлов.При моделировании красная вспышка внутри топливного стержня означает, что произошло событие деления, а синяя вспышка указывает на поглощение нейтронов.

Когда ядерное деление используется для выработки электроэнергии, это называется ядерной энергией. В этом случае уран-235 используется в качестве ядерного топлива, и его деление запускается поглощением медленно движущегося теплового нейтрона. Другими изотопами, которые могут быть индуцированы к подобному делению, являются плутоний-239, уран-233 и торий-232. [2] Для элементов легче железа в периодической таблице ядерный синтез вместо ядерного деления дает энергию.Однако в настоящее время не существует метода, который позволил бы нам получить доступ к мощности, которую может произвести синтез.

Список литературы

,

5 Измерение 3: Основные дисциплинарные идеи - Физические науки | Рамки для естественнонаучного образования в K-12: практики, сквозные концепции и основные идеи

Излучение может излучаться или поглощаться веществом. Когда вещество поглощает свет или инфракрасное излучение, энергия этого излучения преобразуется в тепловое движение частиц в веществе или, для более коротких длин волн (ультрафиолет, рентгеновские лучи), энергия излучения поглощается атомами или молекулами и, возможно, может ионизируйте их, выбивая электрон.

Неконтролируемые системы всегда развиваются в сторону более стабильных состояний, то есть в сторону более равномерного распределения энергии внутри системы или между системой и окружающей средой (например, вода течет вниз, объекты, которые более горячие, чем их окружающая среда, остывают). Любой объект или система, которые могут деградировать без дополнительной энергии, нестабильны. В конце концов он изменится или развалится, хотя в некоторых случаях он может оставаться в нестабильном состоянии в течение длительного времени перед распадом (например, долгоживущие радиоактивные изотопы).

Конечные точки уровня обучения для PS3.B

К концу 2 класса. Солнечный свет согревает поверхность Земли.

К концу 5 класса. Энергия присутствует всякий раз, когда есть движущиеся объекты, звук, свет или тепло. Когда объекты сталкиваются, энергия может передаваться от одного объекта к другому, тем самым изменяя их движение. При таких столкновениях некоторая энергия обычно также передается окружающему воздуху; в результате воздух нагревается и раздается звук.

Свет также передает энергию с места на место. Например, энергия, излучаемая солнцем, передается на Землю светом. Когда этот свет поглощается, он нагревает землю, воздух и воду Земли и способствует росту растений.

Энергия также может передаваться с места на место с помощью электрического тока, который затем можно использовать локально для создания движения, звука, тепла или света. Токи могли быть созданы с самого начала путем преобразования энергии движения в электрическую (например,g., движущаяся вода, приводящая в движение вращающуюся турбину, которая генерирует электрические токи).

К концу 8 класса . Когда энергия движения объекта изменяется, в то же время неизбежно происходит какое-то другое изменение энергии. Например, трение, которое вызывает остановку движущегося объекта, также приводит к увеличению тепловой энергии на обеих поверхностях; в конечном итоге тепловая энергия передается в окружающую среду по мере охлаждения поверхностей. Точно так же, чтобы заставить объект двигаться или поддерживать его движение, когда силы трения передают энергию от него,

,

Глава 4: Заблуждения как препятствия на пути к пониманию науки | Новый взгляд на преподавание естественных наук: Справочник

, они часто предпочитаются учащимся, потому что кажутся более разумными и, возможно, более полезными для целей учащегося (Mayer, 1987). Эти убеждения могут сохраняться в сознании ученика как подозрения и препятствовать дальнейшему обучению (McDermott, 1991).

Прежде чем принять концепции, которые научное сообщество считает правильными, учащиеся должны противостоять своим собственным убеждениям, а также связанным с ними парадоксам и ограничениям, а затем попытаться восстановить знания, необходимые для понимания представленной научной модели.Этот процесс требует, чтобы учитель:

  • Выявление неправильных представлений учащихся.

  • Предоставьте учащимся форум, на котором они смогут разобраться со своими неправильными представлениями.

  • Помогите студентам восстановить и усвоить свои знания на основе научных моделей.

Эти шаги рассматриваются далее в этой главе.

Пример фактического заблуждения

Учитель географии в начальной школе однажды сообщил всему моему классу, что Гольфстрим - это всего лишь река Миссисипи, плывущая по соленой поверхности Атлантического океана до самой Норвегии.Я должным образом усвоил это и никогда больше не думал об этом. Она оставалась неизученной и неоспоримой в моей голове в течение нескольких десятилетий, пока эта тема не возникла в дискуссии с коллегами, и она поднялась, как какая-то странная глубоководная рыба; Мне стоило только упомянуть об этом, чтобы меня резко крикнули (и я сам, подумав полсекунды). Я был впечатлен ясностью и подробностями, с которыми этот хрупкий «неточность» десятилетиями хранился в моей голове; Бьюсь об заклад, есть и другие, и держу пари, что они есть у всех.Их могут быть целые семьи, скрывающиеся, как латимерия, в коллективных глубинах. Я знаю, что есть двадцать или тридцать из нас, которые либо откопали и взорвали ересь Гольфстрима, либо до сих пор несут ее в такт (Blackburn, 1995).

Выявление неправильных представлений

Прежде чем можно будет исправить неправильные представления, их необходимо выявить. Многие исследователи и учителя составили списки часто встречающихся заблуждений (см. Врезку в конце главы).Ряд профессиональных обществ разработали концептуальные тесты, которые позволяют выявить неправильные представления студентов; мы настоятельно рекомендуем вам проконсультироваться с организациями, указанными в Приложении B для получения дополнительной информации. Кроме того, обсуждения в небольших группах и рабочее время являются эффективными форумами для выявления неправильных представлений студентов. Благодаря практике и усилиям учитель может научиться исследовать концептуальные рамки ученика (часто просто слушая), не прибегая к авторитету и не ставя ученика в неловкое положение. Мазур нашел способ помочь студентам проверить свои концептуальные рамки даже в рамках большого формата лекции (см. Врезку в главе 3).Хэйк (1992) использовал вводные лабораторные упражнения, чтобы помочь студентам проверить свои концептуальные основы понимания движения. Задания для сочинения, в которых студентов просят объяснить свои рассуждения, полезны для выявления неправильных представлений студентов. Эти эссе и обсуждения не нужно использовать для выставления оценок, их можно использовать как часть процесса обучения, чтобы узнать, что и как думают ваши ученики.

Заблуждения могут возникать в понимании учащимися научных методов, а также в их организации научных знаний.Например, ученики научного класса часто выражают разочарование из-за того, что эксперимент не сработал. Они не до конца понимают, что эксперименты - это средство проверки идей и гипотез, а не достижения ожидаемого результата. Для ученого эксперимент дает результат, который нужно интерпретировать. В этом смысле каждый эксперимент «работает», но может работать не так, как ожидалось.

Помощь студентам в преодолении их заблуждений

Полезно проанализировать и подумать о возможных заблуждениях, прежде чем преподавать в классе или лаборатории, в которых используется новый

,Гидравлический прыжок

- Типы и характеристики гидравлического прыжка

Что такое гидравлический прыжок?

Гидравлический скачок - это скачок или стоячая волна, образующаяся при изменении глубины потока воды из сверхкритического в докритическое состояние.

Когда наклон открытого канала уменьшается от крутого до умеренного, глубина потока воды увеличивается до критической глубины, и в какой-то момент возникает неустойчивость потока. Поток становится турбулентным до тех пор, пока ниже по потоку не будет достигнута новая нормальная глубина.Это называется гидравлическим прыжком.

Определение различных глубин в потоке в открытом канале:

Требуется понять, что такое разные глубины потока, чтобы понять определение гидравлического прыжка.

Глубина потока:

Глубина потока - это глубина, на которой вода течет над уровнем земли в открытом канале.

Критическая глубина:

Критическая глубина открытого канала - это минимальная глубина воды над уровнем земли, при которой скорость потока очень высока, а течение имеет большую турбулентность.Скорость воды на этой глубине называется критической скоростью.

Сверхкритическая глубина:

Сверхкритическая глубина - это глубина воды, которая меньше критической глубины, и она представляет собой очень тяжелую и сверхкритическую ситуацию для основных потоков, происходящих в плотинах, плотинах и многих ирригационных сооружениях. Скорость воды на этой глубине больше критической. Течение в этой области называется сверхкритическим.

Докритическая глубина:

Докритическая глубина - это глубина, превышающая критическую.Скорость воды на этой глубине меньше критической. Течение в этой области называется докритическим.

Основные характеристики гидравлического прыжка:

1. Прыжок неустойчивый, неравномерный

2. В зависимости от направления ветра и сильного ветра он меняет свои свойства и иногда может быть неровным и волнистым.

Использование гидравлического прыжка:

Гидравлический скачок обязательно образуется для уменьшения энергии воды, когда сток падает в водосброс.Становится необходимым уменьшить его энергию и поддерживать стабильные скорости, это явление называется диссипацией энергии в гидротехнических сооружениях.

типов гидравлических прыжков - на основе числа Фруда:

В основном гидравлический скачок возникает многих типов в зависимости от топографических особенностей и шероховатости поверхности пласта, а также многих других естественных взаимосвязей. Этот тип гидравлического прыжка, вероятно, можно выразить на основе числа Фруда:

.

1. Необычный гидравлический прыжок - число Фруда (от 1 до 3):

Неровный прыжок - это неправильная форма, неправильная форма и определенные завихрения в частицах воды.

2. Слабый прыжок - число Фруда (от 3 до 6)

Слабый скачок имеет место, когда скорость в воде очень мала, и частицы воды не могут быть стабильными и текут по-разному.

3. Качающийся гидравлический прыжок - число Фруда (6-20)

Осциллирующий скачок образуется, когда колеблющаяся струя входит в сверхкритическое состояние, и там количество частиц начинает колебаться по часовой стрелке или против часовой стрелки, образуя более слабые приливы или волны на верхней поверхности.Также поток зависит от сильного потока воздуха в одном направлении.

4. Устойчивый гидравлический прыжок - число Фруда (от 20 до 80)

При устойчивом прыжке поверхность слоя довольно шероховатая, поэтому частицы начинают стремиться в одном направлении с большой скоростью и турбулентностью, потери на трение больше при этом типе прыжка.

5. Сильный гидравлический прыжок - число Фруда (более 80)

Сильный прыжок - это идеальный прыжок, образующийся, когда потери на трение больше, давление воздуха одинаковое, а скорость очень высока, поэтому потери имеют место.Вода меняет свое состояние с суперкритического на докритическое на очень короткой длине по сравнению со всеми другими типами гидравлических прыжков, поэтому этот прыжок очень предпочтителен для плотин.

Подробнее:

Что такое плотина? Типы водосливов и водосливов

Гидрологический цикл - процесс и компоненты

Типы дождемеров для измерения количества осадков

Поперечный дренаж и его виды

Гидравлические резервуары - Типы расширительных резервуаров, их функции и применение

,

Смотрите также