Успевайте заказать остекление

ПО СТАРЫМ ЦЕНАМ!!!

Демонтаж старого балкона - бесплатно!

Можно ли на балконе установить батарею


Вынос батареи на балкон: инструкция по установке радиатора

На чтение 6 мин.

Присоединение балкона или лоджии к основному помещению – зачастую единственный способ получить дополнительные пригодные для кабинета или мастерской квадратные метры. Естественно, полноценно наслаждаться увеличенной жилплощадью можно, если она достаточно обогревается в холодное время года. Первая мысль, которая возникает при выборе способа отопления, – перенос радиатора на балкон или установка дополнительного. Однако, это путь может быть не самым лучшим и простым.

Что необходимо учесть при переносе

Первая и основная преграда на пути такого решения – Жилищный Кодекс РФ, который  категорически запрещает переносить на балконы и лоджии инженерные коммуникации, в том числе и батареи отопления. В очень редких случаях удаётся получить официальное законное разрешение на такую перепланировку в многоквартирных домах. Зато владельцы частных домов могут проводить этот вид работ совершенно спокойно.

Второй важный фактор, который необходимо учесть – состояние наружных стен. Устанавливать любую систему отопления имеет смысл на хорошо утеплённых площадях, иначе никакой способ не будет эффективным. Кроме того, если стена промерзает, то велика вероятность замерзания воды и прорыва радиатора. Последствия – не только штраф за незаконную перепланировку, но и оплата ремонта расположенных ниже квартир.

Последовательность действий

Необходимо основательно утеплить и установить двойные стеклопакеты!

Итак, законная и технически правильная последовательность действий при желании разместить на балконе радиатор отопления состоит из следующих этапов:

  • утепление наружных стен;
  • согласование перепланировки, получение соответствующих разрешений и заключений;
  • выбор оптимального вида радиатора и способа установки;
  • подготовка стены – установка теплоизоляции, финишная отделка;
  • непосредственно монтаж.

Если вы тверды в своих намерениях, то для многоквартирных домов рекомендуется именно переносить радиатор из комнаты на балкон, а не устанавливать дополнительный, который сразу ощутимо снизит эффективность общедомовой системы – это вряд ли понравится соседям и повлечёт за собой проверки.

Подготовка к монтажу

Выбор радиатора

Выбирать тип радиатора нужно исходя из его технических характеристик, наиболее важная из которых – рабочее давление. Оно должно соответствовать пределам перепадов давления в отопительной системе доме. Как правило, в старых пятиэтажках значение этого показателя составляет 6 – 8 атмосфер, а в многоэтажных (10 – 14 этажей) уровень давления достигает уже 12 – 15 атмосфер.

Второй важный показатель – устойчивость к гидроударам. От этой характеристики зависит срок службы радиатора и качество обогрева. При централизованной системе отопления избежать гидроударов практически невозможно, поэтому при выборе оборудования нужно обращать внимание на эту техническую характеристику. К дополнительным важным факторам относятся срок службы, лёгкость монтажа и дизайн радиатора.

Типы радиаторов

  • Чугунные. Имеют самый продолжительный срок эксплуатации (до 35 лет). Основной недостаток – долгое нагревание и остывание.
  • Стальные панельные. Прослужат около 15 лет. Ценятся за высокие показатели теплоотдачи и другие технические характеристики, а также невысокую стоимость.
  • Стальные трубчатые. Выпускаются в различных цветах и дизайнерских исполнениях, что позволяет подобрать их под любой интерьер. Отличаются отличными потребительскими свойствами. К недостаткам относится высокая стоимость.
  • Алюминиевые. Средний срок службы 15 – 20 лет. Характеризуются высокой теплопроводностью и небольшой массой. Основной недостаток – чувствительность к PH наполнителя, поэтому рекомендуются для частных домов с автономной системой отопления.
  • Биметаллические. Лучший вариант для квартиры, так как непритязательны к составу и качеству воды, обладают хорошей теплоотдачей, стойки к гидроударам.

Расчёт количества секций

Все виды радиаторов являются составными, поэтому можно подобрать количество секций, необходимых для обогрева конкретного помещения в зависимости от площади. Расчёт нужно производить на основе общепринятых норм:

  • одна алюминиевая секция на 2 кв.м;
  • одна биметаллическая секция на 1,5 кв.м;
  • добавить 1-2 секции для перестраховки.

Выбор варианта подключения

  • Боковой. Наиболее распространённый способ монтажа. Вводная и выводная труба монтируется с одной стороны радиатора. Основное требование – соблюдать расстояние между штуцерами, иначе радиатор не будет достаточно прогреваться.
  • Нижний. При этом варианте обе трубы монтируются снизу радиатора – вводная  с одной стороны, выходная с другой. Основной недостаток – маленькая теплоотдача.
  • Диагональный. Вводная монтируется сверху на одной стороне радиатора, а выходная снизу на другой. При таком способе достигаются наименьшие теплопотери, поэтому он считается самым лучшим.

Какие трубы выбрать

Для работ рекомендуется выбирать армированные полипропиленовые трубы, потому что они:

  • легко гнутся, что позволяет провести монтаж любой сложности;
  • не деформируются в процессе эксплуатации;
  • не требуют проведения сварочных работ – на места стыков наносят флюс и запаивают специальной паяльной лампой;
  • обладают высоким коэффициентом теплоотдачи.

Возможно использование медных труб, но это более дорогой и сложный в монтаже вариант. Обыкновенные пропиленовые быстро деформируются и теряют привлекательный внешний вид.

Монтаж

Работы по установке, переносу и замене батарей лучше проводить в летний период, когда в системе отсутствует вода. Во время отопительного сезона перед проведением работ нужно получить разрешение на отключение от сети от обслуживающей компании (не бесплатно), перекрыть стояк в строго разрешённое время (что явно не одобрят соседи).

Проведение таких работ требует профессиональной подготовки и наличия инструментов. Особое внимание следует уделить герметизации всех узлов соединений – от этого будет зависеть надёжность эксплуатации системы.

Основные правила и требования

Для хорошей теплоотдачи должны быть соблюдены следующие расстояния и условия:

Общие требования к монтажу радиаторов в помещении:

Порядок проведения работ

  1. Демонтировать старый радиатор в помещении. Также необходимо обрезать трубы на расстоянии 10 см от мест подключения – если вы решились на такую перепланировку, то имеет смысл одновременно заменить и подводку.
  2. Сделать отверстия в стене или балконной перегородке, через которые будут проходить трубы, связывающие радиатор и стояк.
  3. Через отверстия пропустить трубы с нарезанной резьбой так, чтобы они выходили в помещение на 8 – 10 см.
  4. Последовательно установить все соединительные элементы (фитинги, подводки) со стороны комнаты. Детали нужных размеров должны иметь резьбу.
  5. Разметить место крепления батареи. Установить и закрепить кронштейны.
  6. Смонтировать батарею, отрегулировать правильность навески с помощью уровня.
  7. Смонтировать перемычки, каналы поступления и отвода воды со стороны балкона. Установить кран Маевского для спускания воздуха.
  8. Подключиться к общей системе и проверить работу радиатора.

Когда речь идёт об обогреве присоединённой лоджии в многоквартирном доме, в большинстве случаев имеет смысл рассмотреть другие варианты: тёплый пол, потолочное инфракрасное отопление. Такие системы не менее эффективны, а установка не требует согласований.

Электрический теплый пол кабельной системы

Подробная видеоинструкция по монтажу:

Заряд в секундах, в последние месяцы

(Pocket-lint). Хотя смартфоны, умные дома и даже умные носимые устройства становятся все более совершенными, они все еще ограничены мощностью. Аккумулятор не совершенствовался десятилетиями. Но мы находимся на пороге революции власти.

Крупные технологические и автомобильные компании слишком хорошо осведомлены об ограничениях литий-ионных аккумуляторов.Несмотря на то, что чипы и операционные системы становятся более эффективными для экономии энергии, мы все еще рассматриваем только один или два дня использования смартфона перед подзарядкой.

Хотя может пройти некоторое время, прежде чем мы сможем прожить неделю жизни наших телефонов, разработка идет хорошо. Мы собрали все лучшие открытия в области аккумуляторов, которые могут быть с нами в ближайшее время, от беспроводной зарядки до сверхбыстрой 30-секундной подзарядки. Надеюсь, скоро вы увидите эту технологию в своих гаджетах.

Литий-ионная батарея без кобальта

Исследователи из Техасского университета разработали литий-ионную батарею, в которой в качестве катода не используется кобальт.Вместо этого он переключился на высокий процент никеля (89 процентов), используя марганец и алюминий в качестве других ингредиентов. «Кобальт - наименее распространенный и самый дорогой компонент в катодах аккумуляторных батарей», - сказал профессор Арумугам Мантирам, профессор кафедры машиностроения Уолкера и директор Техасского института материалов. «И мы полностью устраняем это». Команда утверждает, что с помощью этого решения они преодолели типичные проблемы, обеспечив длительный срок службы батареи и равномерное распределение ионов.

SVOLT представляет батареи для электромобилей, не содержащие кобальт.

Несмотря на то, что свойства электромобилей по снижению выбросов широко распространены, все еще существуют разногласия по поводу аккумуляторов, особенно по поводу использования таких металлов, как кобальт.Компания SVOLT, штаб-квартира которой находится в Чанчжоу, Китай, объявила о производстве безкобальтовых батарей, предназначенных для рынка электромобилей. Помимо сокращения содержания редкоземельных металлов, компания заявляет, что они обладают более высокой плотностью энергии, что может привести к дальности действия до 800 км (500 миль) для электромобилей, а также продлить срок службы батареи и повысить безопасность. Мы не знаем, где именно мы увидим эти аккумуляторы, но компания подтвердила, что работает с крупным европейским производителем.

Тимо Иконен, Университет Восточной Финляндии

На шаг ближе к литий-ионным батареям с кремниевым анодом

Стремясь решить проблему нестабильного кремния в литий-ионных батареях, исследователи из Университета Восточной Финляндии разработали метод производства гибридного анода. , используя микрочастицы мезопористого кремния и углеродные нанотрубки. В конечном итоге цель состоит в том, чтобы заменить графит в качестве анода в батареях и использовать кремний, емкость которого в десять раз больше. Использование этого гибридного материала улучшает характеристики батареи, в то время как силиконовый материал устойчиво производится из золы шелухи ячменя.

Университет Монаша

Литий-серные аккумуляторы могут превзойти литий-ионные, снизить воздействие на окружающую среду

Исследователи из Университета Монаша разработали литий-серные аккумуляторы, способные питать смартфон в течение 5 дней, превосходя литий-ионные. Исследователи изготовили эту батарею, имеют патенты и интерес производителей. У группы есть финансирование для дальнейших исследований в 2020 году, заявив, что дальнейшие исследования автомобилей и использования сетей будут продолжены.

Утверждается, что новая аккумуляторная технология оказывает меньшее воздействие на окружающую среду, чем литий-ионные, и снижает производственные затраты, при этом предлагая потенциал для питания автомобиля на расстоянии 1000 км (620 миль) или смартфона в течение 5 дней.

Аккумулятор IBM получен из морской воды и превосходит по своим характеристикам литий-ионный

IBM Research сообщает, что они обнаружили новый химический состав аккумуляторов, который не содержит тяжелых металлов, таких как никель и кобальт, и потенциально может превзойти литий-ионные. IBM Research утверждает, что этот химический состав никогда раньше не использовался в комбинации в батареях и что материалы можно извлекать из морской воды.

Производительность батареи многообещающая, при этом IBM Research заявляет, что она может превзойти литий-ионную в ряде различных областей - она ​​дешевле в производстве, она может заряжаться быстрее, чем литий-ионная, и может иметь как более высокую мощность. и плотности энергии.Все это доступно в аккумуляторах с низкой горючестью электролитов.

IBM Research отмечает, что эти преимущества сделают ее новую технологию аккумуляторов подходящей для электромобилей, и вместе с Mercedes-Benz, среди прочих, компания работает над превращением этой технологии в жизнеспособную коммерческую батарею.

Panasonic

Система управления батареями Panasonic

Хотя литий-ионные батареи повсюду и их количество растет, управление этими батареями, включая определение того, когда у них закончился срок службы, затруднено.Panasonic, работая с профессором Масахиро Фукуи из Университета Рицумейкан, разработала новую технологию управления батареями, которая значительно упростит отслеживание батарей и определение остаточной стоимости литий-ионных в них.

Panasonic заявляет, что ее новую технологию можно легко применить с изменением системы управления батареями, что упростит мониторинг и оценку батарей с несколькими составными ячейками, которые вы можете найти в электромобиле. Panasonic сообщает, что эта система поможет продвинуться в направлении устойчивого развития, поскольку сможет лучше управлять повторным использованием и переработкой литий-ионных батарей.

Асимметричная модуляция температуры

Исследования продемонстрировали метод зарядки, который приближает нас на шаг ближе к сверхбыстрой зарядке - XFC - который направлен на пробег 200 миль электромобиля примерно за 10 минут с зарядкой 400 кВт. Одна из проблем с зарядкой - это литиевая гальваника в батареях, поэтому метод асимметричной температурной модуляции заряжает при более высокой температуре, чтобы уменьшить гальваническое покрытие, но ограничивает это 10-минутными циклами, избегая роста межфазной границы твердого электролита, что может сократить срок службы батареи.Сообщается, что этот метод уменьшает деградацию батареи, позволяя заряжать XFC.

Pocket-lint

Песочная батарея увеличивает время автономной работы в три раза

В этом альтернативном типе литий-ионной батареи используется кремний для достижения в три раза большей производительности, чем у современных графитовых литий-ионных батарей. Батарея по-прежнему литий-ионная, как и в вашем смартфоне, но в анодах используется кремний вместо графита.

Ученые из Калифорнийского университета в Риверсайде какое-то время занимались нанокремнием, но он слишком быстро разрушается, и его трудно производить в больших количествах.С помощью песка его можно очистить, измельчить, затем измельчить с солью и магнием перед нагреванием для удаления кислорода, что приведет к получению чистого кремния. Он пористый и трехмерный, что помогает повысить производительность и, возможно, продлить срок службы батарей. Изначально мы начали это исследование в 2014 году, и теперь оно приносит свои плоды.

Silanano - стартап по производству аккумуляторных батарей, который выводит эту технологию на рынок и получил большие инвестиции от таких компаний, как Daimler и BMW. Компания заявляет, что ее решение может быть применено к существующему производству литий-ионных аккумуляторов, поэтому оно настроено на масштабируемое развертывание, обещая прирост производительности аккумулятора на 20% сейчас или на 40% в ближайшем будущем.

Захват энергии от Wi-Fi

Хотя беспроводная индуктивная зарядка является обычным явлением, возможность захвата энергии от Wi-Fi или других электромагнитных волн остается проблемой. Однако группа исследователей разработала ректенну (антенну, собирающую радиоволны), которая представляет собой всего лишь несколько атомов, что делает ее невероятно гибкой.

Идея состоит в том, что устройства могут включать в себя эту ректенну на основе дисульфида молибдена, чтобы энергия переменного тока могла быть получена от Wi-Fi в воздухе и преобразована в постоянный ток либо для подзарядки батареи, либо для непосредственного питания устройства.Это может привести к появлению медицинских таблеток с питанием без необходимости во внутренней батарее (более безопасно для пациента) или мобильных устройств, которые не нужно подключать к источнику питания для подзарядки.

Энергия, полученная от владельца устройства

Вы можете стать источником энергии для своего следующего устройства, если исследования TENG принесут свои плоды. TENG или трибоэлектрический наногенератор - это технология сбора энергии, которая улавливает электрический ток, генерируемый при контакте двух материалов.

Исследовательская группа из Суррейского института передовых технологий и Университета Суррея дала представление о том, как эта технология может быть использована для питания таких вещей, как носимые устройства. Хотя мы еще далеки от того, чтобы увидеть это в действии, исследование должно дать дизайнерам инструменты, необходимые для эффективного понимания и оптимизации будущей реализации TENG.

Золотые нанопроволочные батареи

Великие умы Калифорнийского университета в Ирвине создали треснувшие нанопроволочные батареи, способные выдержать много перезарядок.В результате в будущем батареи могут не разрядиться.

Нанопроволока, в тысячу раз тоньше человеческого волоса, открывает большие возможности для батарей будущего. Но они всегда ломались при подзарядке. Это открытие использует золотые нанопровода в гелевом электролите, чтобы избежать этого. Фактически, эти батареи были проверены на перезарядку более 200 000 раз за три месяца и не показали никаких повреждений.

Твердотельные литий-ионные

Твердотельные батареи традиционно обеспечивают стабильность, но за счет передачи электролита.В статье, опубликованной учеными Toyota, рассказывается об их испытаниях твердотельной батареи, в которой используются сульфидные суперионные проводники. Все это означает превосходный аккумулятор.

В результате получился аккумулятор, способный работать на уровне суперконденсатора и полностью заряжаться или разряжаться всего за семь минут, что делает его идеальным для автомобилей. Поскольку он твердотельный, это также означает, что он намного стабильнее и безопаснее, чем существующие батареи. Твердотельный блок также должен работать при температурах от минус 30 до ста градусов Цельсия.

Электролитные материалы по-прежнему создают проблемы, поэтому не ожидайте увидеть их в ближайшее время в автомобилях, но это шаг в правильном направлении к более безопасным и быстро заряжаемым аккумуляторам.

Графеновые батареи Grabat

Графеновые батареи потенциально могут быть одними из самых лучших среди имеющихся. Grabat разработал графеновые батареи, которые могут обеспечить электромобилям запас хода до 500 миль без подзарядки.

Graphenano, компания, стоящая за разработкой, заявляет, что аккумуляторы можно полностью зарядить всего за несколько минут и они могут заряжаться и разряжаться в 33 раза быстрее, чем литий-ионные.Разряд также важен для таких вещей, как автомобили, которым требуется огромное количество энергии для быстрого трогания с места.

Нет информации о том, используются ли аккумуляторы Grabat в настоящее время в каких-либо продуктах, но у компании есть аккумуляторы для автомобилей, дронов, мотоциклов и даже для дома.

Микро-суперконденсаторы лазерного производства

Rice Univeristy

Ученые из Университета Райса совершили прорыв в создании микроконденсаторов. В настоящее время их производство дорогое, но с использованием лазеров, которые вскоре могут измениться.

При использовании лазеров для выжигания электродов на листах пластика затраты на производство и усилия значительно снижаются. В результате получается аккумулятор, который может заряжаться в 50 раз быстрее, чем нынешние аккумуляторы, и разряжаться даже медленнее, чем современные суперконденсаторы. Они даже прочные, способны работать после более чем 10 000 сгибаний во время испытаний.

Пенные батареи

Прието верит, что будущее аккумуляторов - за 3D. Компании удалось решить эту проблему с помощью своей батареи, в которой используется вспененная медь.

Это означает, что эти батареи будут не только более безопасными благодаря отсутствию горючего электролита, но и будут обеспечивать более длительный срок службы, более быструю зарядку, в пять раз более высокую плотность, будут дешевле в производстве и будут меньше, чем существующие предложения.

Prieto стремится в первую очередь размещать свои батареи в небольших предметах, например, в носимых устройствах. Но в нем говорится, что аккумуляторы можно масштабировать, чтобы мы могли видеть их в телефонах и, возможно, даже в автомобилях в будущем.

Carphone Warehouse

Складной аккумулятор похож на бумагу, но прочный

Jenax J.Аккумулятор Flex был разработан, чтобы сделать гаджеты возможными. Батарея, похожая на бумагу, складывается и является водонепроницаемой, что означает, что ее можно интегрировать в одежду и носимые устройства.

Батарея уже создана и даже прошла испытания на безопасность, включая ее сложение более 200 000 раз без потери производительности.

Ник Билтон / The New York Times

uBeam по воздуху зарядка

uBeam использует ультразвук для передачи электричества. Энергия преобразуется в звуковые волны, неслышимые для людей и животных, которые передаются, а затем снова преобразуются в энергию при достижении устройства.

С концепцией uBeam наткнулась 25-летняя выпускница астробиологии Мередит Перри. Она основала компанию, которая позволит заряжать гаджеты по воздуху с помощью пластины толщиной 5 мм. Эти передатчики можно прикрепить к стенам или сделать предметами декоративного искусства, чтобы передавать энергию на смартфоны и ноутбуки. Гаджетам просто нужен тонкий приемник, чтобы принимать заряд.

StoreDot

StoreDot заряжает мобильные телефоны за 30 секунд

StoreDot, стартап, созданный на базе кафедры нанотехнологий Тель-Авивского университета, разработал зарядное устройство StoreDot.Он работает с современными смартфонами и использует биологические полупроводники, изготовленные из природных органических соединений, известных как пептиды - короткие цепочки аминокислот, которые являются строительными блоками белков.

В результате получилось зарядное устройство, способное заряжать смартфон за 60 секунд. Батарея состоит из «негорючих органических соединений, заключенных в многослойную защитную структуру, предотвращающую перенапряжение и нагрев», поэтому проблем с ее взрывом быть не должно.

Компания также объявила о планах создать аккумулятор для электромобилей, который заряжается за пять минут и обеспечивает запас хода до 300 миль.

Пока неизвестно, когда аккумуляторы StoreDot будут доступны в глобальном масштабе - мы ожидали, что они появятся в 2017 году, - но когда они появятся, мы ожидаем, что они станут невероятно популярными.

Pocket-lint

Прозрачное солнечное зарядное устройство

Alcatel продемонстрировал мобильный телефон с прозрачной солнечной панелью над экраном, которая позволит пользователям заряжать свой телефон, просто поместив его на солнце.

Хотя вряд ли он появится в продаже в течение некоторого времени, компания надеется, что он каким-то образом решит повседневные проблемы, связанные с постоянным отсутствием заряда батареи.Телефон будет работать как с прямыми солнечными лучами, так и со стандартным освещением, так же, как и обычные солнечные батареи.

Phienergy

Алюминиево-воздушная батарея обеспечивает пробег на 1100 миль без подзарядки

Автомобиль сумел проехать 1100 миль на одной зарядке аккумулятора. Секрет этого супердиапазона заключается в технологии батареи, называемой «алюминий-воздух», которая использует кислород из воздуха для заполнения своего катода. Это делает его намного легче, чем литий-ионные аккумуляторы, заполненные жидкостью, что дает автомобилю гораздо больший запас хода.

Бристольская лаборатория робототехники

Батареи с питанием от мочи

Фонд Билла Гейтса финансирует дальнейшие исследования Бристольской робототехнической лаборатории, которая обнаружила батареи, которые могут питаться от мочи. Этого достаточно для зарядки смартфона, который ученые уже продемонстрировали. Но как это работает?

Используя микробный топливный элемент, микроорганизмы собирают мочу, расщепляют ее и выделяют электричество.

Питание от звука

Исследователи из Великобритании создали телефон, который может заряжаться, используя окружающий звук в окружающей атмосфере.

Смартфон построен по принципу пьезоэлектрического эффекта. Были созданы наногенераторы, улавливающие окружающий шум и преобразующие его в электрический ток.

Наностержни даже реагируют на человеческий голос, что означает, что болтливые мобильные пользователи могут подключать свой собственный телефон, пока разговаривают.

Двойная угольная батарея Ryden заряжается в 20 раз быстрее.

Power Japan Plus уже анонсировала новую технологию аккумуляторов под названием Ryden dual carbon. Он не только прослужит дольше и будет заряжаться быстрее, чем литиевая, но его можно будет производить на тех же заводах, где производятся литиевые батареи.

В аккумуляторах используются углеродные материалы, что означает, что они более устойчивы и экологически безопасны, чем существующие альтернативы. Это также означает, что батареи будут заряжаться в двадцать раз быстрее, чем литий-ионные. Они также будут более долговечными, способными выдержать до 3000 циклов зарядки, а также более безопасными с меньшей вероятностью возгорания или взрыва.

Натрий-ионные аккумуляторы

Ученые из Японии работают над новыми типами аккумуляторов, которые не нуждаются в литии, таких как аккумулятор вашего смартфона.В этих новых батареях будет использоваться натрий, один из самых распространенных материалов на планете, а не редкий литий, и они будут в семь раз эффективнее обычных батарей.

Исследования натриево-ионных аккумуляторов продолжаются с восьмидесятых годов в попытке найти более дешевую альтернативу литию. Используя соль, шестой по распространенности элемент на планете, можно сделать батареи намного дешевле. Ожидается, что коммерциализация аккумуляторов для смартфонов, автомобилей и прочего оборудования начнется в ближайшие 5-10 лет.

Upp

Зарядное устройство для водородных топливных элементов Upp

Переносное зарядное устройство для водородных топливных элементов Upp уже доступно. Он использует водород для питания вашего телефона, чтобы вы не беспокоились и оставались экологически чистыми.

Одна водородная ячейка обеспечит пять полных зарядов мобильного телефона (емкость 25 Втч на ячейку). И единственный побочный продукт - водяной пар. Разъем USB типа A означает, что он будет заряжать большинство USB-устройств с выходом 5 В, 5 Вт, 1000 мА.

Батареи со встроенным огнетушителем

Литий-ионные батареи нередко перегреваются, загораются и даже могут взорваться.Аккумулятор в Samsung Galaxy Note 7 - яркий тому пример. Исследователи из Стэнфордского университета придумали литий-ионные аккумуляторы со встроенными огнетушителями.

В батарее есть компонент, называемый трифенилфосфатом, который обычно используется в качестве антипирена в электронике, добавленный к пластиковым волокнам, чтобы помочь разделить положительный и отрицательный электроды. Если температура батареи поднимается выше 150 градусов C, пластмассовые волокна плавятся и выделяется трифенилфосфат.Исследования показывают, что этот новый метод может предотвратить возгорание аккумуляторов за 0,4 секунды.

Майк Циммерман

Батареи, защищенные от взрыва

Литий-ионные батареи имеют довольно летучий слой пористого материала жидкого электролита, расположенный между анодным и катодным слоями. Майк Циммерман, исследователь из Университета Тафтса в Массачусетсе, разработал батарею, которая имеет вдвое большую емкость, чем литий-ионные, но без присущих ей опасностей.

Батарея Циммермана невероятно тонкая, немного толще двух кредитных карт, и заменяет жидкий электролит пластиковой пленкой, имеющей аналогичные свойства.Он может выдерживать прокалывание, измельчение и нагревание, так как он негорючий. Еще предстоит провести много исследований, прежде чем технология сможет выйти на рынок, но хорошо знать, что существуют более безопасные варианты.

Батареи Liquid Flow

Гарвардские ученые разработали батарею, которая накапливает свою энергию в органических молекулах, растворенных в воде с нейтральным pH. Исследователи говорят, что этот новый метод позволит батарее Flow работать исключительно долгое время по сравнению с нынешними литий-ионными батареями.

Маловероятно, что мы увидим эту технологию в смартфонах и т.п., поскольку жидкий раствор, связанный с батареями Flow, хранится в больших резервуарах, чем больше, тем лучше. Считается, что они могут быть идеальным способом хранения энергии, создаваемой решениями в области возобновляемых источников энергии, таких как ветер и солнце.

Действительно, исследование Стэнфордского университета использовало жидкий металл в проточной батарее с потенциально отличными результатами, заявляя, что напряжение вдвое выше, чем у обычных проточных батарей. Команда предположила, что это может быть отличным способом хранения прерывистых источников энергии, таких как ветер или солнечная энергия, для быстрой передачи в сеть по запросу.

IBM и ETH Zurich и разработали жидкостную проточную батарею гораздо меньшего размера, которая потенциально может быть использована в мобильных устройствах. Эта новая батарея утверждает, что может не только обеспечивать питание компонентов, но и одновременно охлаждать их. Обе компании обнаружили две жидкости, которые подходят для этой задачи, и будут использоваться в системе, которая может производить 1,4 Вт мощности на квадратный см, при этом 1 Вт мощности зарезервирован для питания батареи.

Zap & Go Карбон-ионный аккумулятор

Оксфордская компания ZapGo разработала и произвела первую угольно-ионную аккумуляторную батарею, которая уже готова к использованию потребителями.Углеродно-ионный аккумулятор сочетает в себе сверхбыструю зарядку суперконденсатора с характеристиками литий-ионного аккумулятора, при этом полностью пригодный для вторичной переработки.

Компания предлагает зарядное устройство powerbank, которое полностью заряжается за пять минут, а затем полностью заряжает смартфон за два часа.

Цинково-воздушные батареи

Ученые из Сиднейского университета считают, что они придумали способ производства воздушно-цинковых батарей, намного более дешевый, чем существующие методы.Воздушно-цинковые батареи можно считать более совершенными, чем литий-ионные, поскольку они не загораются. Единственная проблема в том, что они полагаются на дорогие компоненты.

Sydney Uni удалось создать воздушно-цинковую батарею без необходимости использования дорогих компонентов, а, скорее, с некоторыми более дешевыми альтернативами. Возможно, появятся более безопасные и дешевые батареи!

Умная одежда

Исследователи из Университета Суррея разрабатывают способ, позволяющий использовать одежду в качестве источника энергии.Батарея называется трибоэлектрическим наногенератором (TENG), которая преобразует движение в накопленную энергию. Накопленное электричество затем можно использовать для питания мобильных телефонов или устройств, таких как фитнес-трекеры Fitbit.

Эта технология может быть применена не только к одежде, она может быть интегрирована в тротуар, поэтому, когда люди постоянно ходят по ней, она может накапливать электричество, которое затем может использоваться для питания ламп или в шинах автомобиля, чтобы может привести машину в действие.

Растягиваемые батареи

Инженеры Калифорнийского университета в Сан-Диего разработали растягиваемый биотопливный элемент, который может вырабатывать электричество из пота.Говорят, что генерируемой энергии достаточно для питания светодиодов и радиомодулей Bluetooth, а это означает, что однажды он сможет питать носимые устройства, такие как умные часы и фитнес-трекеры.

Графеновая батарея Samsung

Компания Samsung сумела разработать «графеновые шары», которые способны увеличивать емкость существующих литий-ионных аккумуляторов на 45 процентов и заряжаться в пять раз быстрее, чем существующие аккумуляторы. Чтобы представить это в контексте, Samsung заявляет, что его новый аккумулятор на основе графена может быть полностью заряжен за 12 минут по сравнению с примерно часом для текущего устройства.

Samsung также заявляет, что его можно использовать не только в смартфонах, но и в электромобилях, поскольку он может выдерживать температуру до 60 градусов Цельсия.

Более безопасная и быстрая зарядка существующих литий-ионных аккумуляторов

Ученые из WMG из Университета Уорика разработали новую технологию, которая позволяет заряжать существующие литий-ионные аккумуляторы в пять раз быстрее, чем рекомендуемые пределы. Технология постоянно измеряет температуру батареи гораздо точнее, чем существующие методы.

Ученые обнаружили, что нынешние батареи действительно могут выходить за пределы рекомендуемых пределов, не влияя на производительность или перегрев. Может быть, нам вообще не нужны другие упомянутые новые батареи!

Написано Крисом Холлом.

,

Можно ли восстановить батареи? - Батарейный университет

Узнайте об элементах малой емкости, согласовании ячеек, балансировке, закороченных элементах и ​​потере электролита.

Пользователи аккумуляторов и предприниматели часто спрашивают: «Можно ли восстановить аккумуляторы?» Ответ: «Это зависит от обстоятельств». Выход из строя аккумулятора не всегда означает конец срока его службы. Вместо того, чтобы выбрасывать пачку, изобретательные предприниматели открывают для себя бизнес-модели, позволяющие вернуть устаревшим батареям вторую жизнь. Учитывая растущее количество выбрасываемых батарей, такие возможности для бизнеса могут только расти.

Три основных дефекта батареи - это низкая емкость, высокое внутреннее сопротивление и повышенный саморазряд. Исчезновение емкости происходит естественным образом со временем; увеличение сопротивления - обычное дело для никелевых аккумуляторов; а повышенный саморазряд отражает возможные нагрузки в полевых условиях. Потери емкости часто можно обратить вспять с помощью NiCd и NiMH; свинцово-кислотная с сульфатом иногда также может быть улучшена. (См. BU-901: Основы тестирования батарей.)

К дефектам батареи относятся низкая емкость, высокое внутреннее сопротивление и повышенный саморазряд.Исчезновение емкости происходит естественным образом со временем; увеличение сопротивления - обычное дело для никелевых аккумуляторов; а повышенный саморазряд отражает стресс. Потеря емкости может быть отменена на никелевых батареях с помощью памяти; некоторое количество свинцовой кислоты при сульфатировании также может быть улучшено.

Батареи можно разделить на переносные, колесные, стартерные и стационарные. Не все аккумуляторы заслуживают обслуживания, но среди хлама есть драгоценности. Чтобы получить прибыль, потребуются некоторые базовые знания о батареях, такие как знакомство с химическим составом и понимание напряжения, ампер-часов, методов зарядки и коэффициента мощности.Прежде всего, вы должны уметь определять, к чему прикоснуться и что передать. Знание предыдущего срока службы и того, как определяется окончание срока службы батареи, будет играть большую роль в том, насколько хорошо эти выброшенные батареи могут быть повторно использованы.

Портативные аккумуляторы

Продавцы в магазине заменяют батареи мобильного телефона при малейшей жалобе покупателя, не проверяя упаковку. Установка новой батареи удовлетворяет покупателя, но это часто не решает предполагаемую проблему короткого времени работы, и покупатель может вернуться.Также есть батареи, которые переходят в спящий режим из-за чрезмерной разрядки. Эти, казалось бы, мертвые литий-ионные аккумуляторы нельзя перезарядить с помощью обычного зарядного устройства, но есть способ вернуть их к жизни. (См. BU-808a, Как разбудить литий-ионный сон)

Многие батареи мобильных телефонов выбрасываются. Они заполняют большие ящики под прилавками обслуживания, и деваться некуда. Между тем, поставщики услуг обнаружили, что девять из десяти замененных пакетов исправны и могут быть восстановлены. По оценкам недавнего исследования, только в США стоимость необоснованной замены батарейки составляет более 650 миллионов долларов в год.

Гениальные предприниматели обнаружили возможность рециркуляции этих брошенных батарей. В США, Великобритании и Израиле возникли сервисные центры, которые закупают излишки батарей тоннами и проверяют их с помощью анализаторов батарей, способных выполнять быстрое тестирование. (См. BU-907: Проверка батарей на основе лития.) Некоторые сервисные центры обслуживают до 400 000 батарей в месяц, а отремонтированные блоки перераспределяются в магазины как B-класса. Исследования показывают, что эти батареи класса B работают так же хорошо, как и новый аккумулятор, поскольку нет данных о разнице в частоте отказов.

Не все смартфоны допускают замену батареи, но это не избавляет от необходимости их тестировать. Невозможность заменить батареи повлияла на бизнес-модель, поскольку количество доступных пакетов для тестирования и рециркуляции уменьшается.

Здравоохранение - большой пользователь портативных батарей. При отсутствии обслуживания батареи производители устройств рекомендуют заменять батареи согласно отметке с датой. Это помогает менять инвентарь, но добавляет ненужное ограничение по времени, поскольку износ батареи в основном объясняется использованием, а не временем простоя.Сильно использованный аккумулятор может выйти из строя в течение отведенного периода для отметки даты, и, чтобы компенсировать этот случай, производители устройств предписывают жесткую политику замены в течение 2–3 лет. Производство к месту назначения может вызвать задержки, а срок службы батареи может быть 1 год, когда она будет введена в эксплуатацию.

Аккумуляторы улучшились и живут дольше; они также имеют более высокую цену. Батареи на основе свинца и никеля рассчитаны на срок службы около 3 лет; Срок службы литий-ионных аккумуляторов составляет 5 лет. (См. BU-501: Основные сведения о разрядке.)

.

Как работают литий-ионные батареи | HowStuffWorks

Литий-ионные аккумуляторные батареи

бывают разных форм и размеров, но все они выглядят примерно одинаково внутри. Если бы вы разобрали аккумуляторную батарею ноутбука (то, что мы НЕ рекомендуем из-за возможности короткого замыкания аккумулятора и возникновения пожара), вы бы обнаружили следующее:

  • Литий-ионные элементы могут быть либо цилиндрическими батареями, которые почти идентичны элементам AA, либо они могут быть призматическими , то есть квадратными или прямоугольными. Компьютер, который включает:
  • Одна или несколько температур. датчики для контроля температуры батареи
  • Схема преобразователя и регулятора для поддержания безопасных уровней напряжения и тока
  • Экранированный разъем для ноутбука , который позволяет питанию и информации поступать в аккумуляторный блок и из него
  • A отвод напряжения , который контролирует энергоемкость отдельных ячеек в аккумуляторном блоке
  • Монитор состояния заряда аккумулятора , который представляет собой небольшой компьютер, который обрабатывает весь процесс зарядки, чтобы обеспечить максимально быструю и полную зарядку аккумуляторов.

Если аккумулятор слишком нагревается во время зарядки или использования, компьютер отключит подачу питания, чтобы попытаться остыть. Если вы оставите свой ноутбук в очень горячей машине и попытаетесь использовать его, этот компьютер может не дать вам включиться, пока все не остынет. Если элементы когда-либо полностью разряжаются, аккумуляторная батарея отключится из-за разрушения элементов. Он также может отслеживать количество циклов зарядки / разрядки и отправлять информацию, чтобы индикатор заряда батареи ноутбука мог сказать вам, сколько заряда осталось в аккумуляторе.

Это довольно сложный маленький компьютер, питающийся от батарей. Такое энергопотребление является одной из причин, по которой литий-ионные батареи теряют 5 процентов своей мощности каждый месяц, когда они бездействуют.

Литий-ионные элементы

Как и у большинства батарей, у вас металлический корпус. Здесь особенно важно использовать металл, потому что аккумулятор находится под давлением. Этот металлический корпус имеет какое-то чувствительное к давлению вентиляционное отверстие .Если аккумулятор когда-либо станет настолько горячим, что может взорваться от избыточного давления, это отверстие сбросит дополнительное давление. Батарея, вероятно, впоследствии станет бесполезной, так что этого следует избегать. Отверстие строго предусмотрено в качестве меры безопасности. То же самое и с переключателем с положительным температурным коэффициентом (PTC) - устройством, которое должно предохранять аккумулятор от перегрева.

Этот металлический футляр содержит длинную спираль, состоящую из трех спрессованных вместе тонких листов:

  • A Положительный электрод
  • A Отрицательный электрод
  • A сепаратор

Внутри корпуса эти листы погружены в органический растворитель, который действует как электролит.Эфир - один из распространенных растворителей.

Сепаратор представляет собой очень тонкий лист пластика с микроперфорацией. Как следует из названия, он разделяет положительный и отрицательный электроды, позволяя ионам проходить через них.

Положительный электрод изготовлен из оксида лития-кобальта или LiCoO 2 . Отрицательный электрод изготовлен из углерода. Когда батарея заряжается, ионы лития перемещаются через электролит от положительного электрода к отрицательному и присоединяются к углю.Во время разряда ионы лития возвращаются в LiCoO 2 из углерода.

Движение этих ионов лития происходит при достаточно высоком напряжении, поэтому каждая ячейка производит 3,7 вольт. Это намного выше 1,5 В, типичных для обычного щелочного элемента AA, который вы покупаете в супермаркете, и помогает сделать литий-ионные батареи более компактными в небольших устройствах, таких как сотовые телефоны. См. «Как работают батареи» для получения подробной информации о батареях различного химического состава.

Мы рассмотрим, как продлить срок службы литий-ионных батарей, и выясним, почему они могут взорваться в следующий раз.

,

Смотрите также