Успевайте заказать остекление

ПО СТАРЫМ ЦЕНАМ!!!

Демонтаж старого балкона - бесплатно!

Какая теплоизоляция лучше для балкона


Утеплитель для балкона - как выбрать оптимальный?

Хороший хозяин обязательно постарается превратить балкон в своей квартире в максимально функциональное, помещение. Понятно, что так как балкон непосредственно контактирует с улицей, то главной проблемой, помимо застекления, становится его термоизоляция. Если походить этому вопросу серьезно, то планирование подобных мероприятий следует начинать с изучения характеристик, а затем и правильного выбора утеплительных материалов.

Утеплитель для балконаУтеплитель для балкона

Выбирая утеплитель для балкона, нужно в первую очередь учитывать среднюю зимнюю температуру региона проживания. Но, кроме этого, перед покупкой обязательно сравнивают несколько разных вариантов, сопоставляя их эксплуатационные возможности и степень безопасности для человека.

В предлагаемой таблице представлены основные характеристики большинства строительных и утеплительных материалов, которые могут используются при преобразовании балкона в дополнительную полезную площадь квартиры.

МатериалыКоэффициент теплопроводности, Вт/м×°С Плотность, кг/м³.Диапазон рабочих температур, °С Паропроницаемость, мг/(м×ч×Па)
Пенополиуретан0,02540-60От -100 до +1500,04-0,05
Экструдированный пенополистирол0,0530-45От - 50 до +750,015
Пенополиэтилен0,04535От -60 до +900,001
Пенопласт0,0340-125От -50 до +750,23
Каменная вата0,04735-150От -60 до +1800,53
Стекловата0,05615-100От -60 до +4800,53
Железобетон2,0425000,03
Пустотелый кирпич0,5814000,16
Дерево (поперек волокон)0,1840-500,06

«Сухие» цифры уже могут сказать о многом, но все же необходимо более пристально рассмотреть наиболее часто применяемые утеплители. А для начала будет полезно разобраться с критериями, которым должен соответствовать термоизоляционный материал для балкона..

Критерии выбора утеплителя

Так как утепляться будет совсем неотапливаемое помещение, не имеющее толстых стен, нужно предусмотреть следующие качества термоизоляционного материала:

  • Он должен иметь низкую теплопроводность — это поможет сохранить тепло, поступающее на балкон из отапливаемых помещений или от обогревательных приборов, не позволяя ему быстро покинуть помещение.

Естественно, чем ниже будет показатель теплопроводности, тем эффективнее термоизоляция.

  • Показатель теплопроводности напрямую зависит от плотности — если она высока, то, значит, о хороших показателях термоизоляции можно только мечтать. Если же утеплитель имеет пористую структуру строения, то низкая теплопроводность будет обеспечена.
  • Необходимо выбирать утеплитель с низкой паропроницаемостью или, если по-другому сказать, предрасположенностью к гигроскопичности, так как любой пропитанный влагой материал теряет свои термоизолирующие качества.
  • Утеплитель должен быть негорючим или же, по крайней мере, самозатухающим. На упаковке горючесть утеплителя проставляется обозначениями от Г1 до Г4. Цифра «1» означает минимальную, а «4» — сильную горючесть материала.

Кроме этого важно обратить внимание на дымообразование горящего утеплителя. Этот показатель маркируется обозначениями от Д1 до Д3.

Еще одним важным параметром из разряда пожаробезопасности является скорость распространения очага пламени. На упаковке утеплителя эта характеристика может обозначаться буквами и цифрами, от РП1 до РП4. РП1 означает, что материал не станет переносчиком огня, а РП4  говорит о быстром распространении пламени после возгорания.

Правильно выбранный по этим критериям материал, возможно, сохранит жизнь и здоровье жильцов квартиры, если вдруг случится возгорание.

  • Экологическая чистота материала не менее важна для здоровья проживающих в квартире людей. Многие современные утеплители со временем начинают выделять вредные для человека вещества, которые могут вызывать различные заболевания.
  • Долговечность материала повлияет на время эксплуатации утепленного балкона без ремонта. Нужно учитывать, что некоторые из утеплителей имеют свойство со временем разлагаться.
  • Необходимо учитывать сложность монтажа материала – технология проведения утепления может существенно различаться. Желательно выбрать такой вариант, который будет проще воплотить в жизнь, особенно, если монтаж планируется проводить самостоятельно.

Звукоизолирующие качества утеплителя тоже будут нелишними, так как помогут оградить квартиру от уличного или дворового шума.

Наиболее часто используемые материалы для утепления разных частей балкона — это минеральная вата и пенополистирол в той или иной модификации, пенофлекс, керамзит и другие.

Пенополистирол

Наверное, самым популярным термоизоляционным материалом в последние десятилетия является пенополистирол, или, как чаще его называют в обиходе – пенопласт. Им утепляют балконы и квартиры, крыши и стены домов, как снаружи, так и изнутри. Однако, так ли он хорош для подобных целей? Чтобы узнать это, необходимо рассмотреть его характеристики пристальнее, так ка материал, кроме многочисленных положительных качеств, имеет и свои значительные «минусы».

Пенополистирол - один из самых популярных утеплителейПенополистирол — один из самых популярных утеплителей

Пенополистирол может быть обычным вспененным и экструдированным. Характеристики этих типов различаются между собой, поэтому не стоит думать, что это практически одно и то же.

Экструдированный пенополистирол

Экструдированный пенополистирол обозначают буквами ЭППС и ХРS. Отличается он от обычного пенопласта технологией изготовления, которая во многом и предопределяет некоторые его качества.

Панелям экструдированного пенополистирола обычно придается определенный оттенокПанелям экструдированного пенополистирола обычно придается определенный оттенок

К его положительным характерным особенностям относятся:

  • Низкое водопоглощение, которое позволяет материалу оставаться практически всегда сухим, а значит, это качество не позволит потерять ему свое основное предназначение — сохранять тепло в помещении.
  • Низкая теплопроводность правильно смонтированного экструдированного пенополистирола даст помещению балкона хорошую защиту от холода. Даже при температуре за стенами дома в — 25 градусов, теплопроводность составляет всего 0,05 Вт/м×°С.
Утепление балкона панелями экструдированного пенополистиролаУтепление балкона панелями экструдированного пенополистирола
  • Небольшой удельный вес материала облегчает его монтаж и подъем на высоту здания. Плотность экструдированного пенополистирола составляет от 35 до 45 кг/м³.
  • Устойчивость к сжатию и деформациям ЭППС – намного выше, чем обычного пенопласта, и он отлично подходит для утепления пола. Усилие при линейной деформации на 10% составляет порядка 0,25—0,4 МПа, а предел прочности на изгиб – от 0,4 до 1 МПа.
  • Устойчивость к растворителям неорганического происхождения, таким, как щелочи, кислоты и соли, позволяет использовать для окрашивания этого материала краски, изготовленные на водной основе.
  • Материалу свойственна достаточная высокая долговечность – срок эксплуатации может исчисляться в 50 и более лет, естественно, при правильном монтаже и закрытии пенополистирола от ультрафиолетовых лучей обшивкой или красящими составами.
  • В закрытом состоянии пенополистирол почти нетоксичен и в процессе эксплуатации не выделяет вредных веществ, поэтому без воздействия на него отдельных факторов, он полностью безопасен.

К «минусам» экструдированного пенополистирола относят следующие его недостатки:

  • Пенополистирол недостаточно устойчив к высоким температурам и их резким скачкам – верхний предел, при котором он может потерять свои заданные формы и эксплуатационные характеристики – всего порядка 75 градусов.
Хоть и не активно, но экструдированный пенополистирол все же может горетьХоть и не активно, но экструдированный пенополистирол все же может гореть
  • Его маркировка обычно —  Г3 и Г4.  В материалах класса Г3 присутствуют добавки антипиренов, и это увеличивает стоимость утеплителя. Если же на упаковке стоит обозначение Г4, то этот пенополистирол имеет достаточно высокую степень горючести и считается утеплителем эконом-категории. Сгорая, пенополистирол дает сильное задымление, причем продукты сгорания очень токсичны, так как включают пары формальдегидов и других опасных для здоровья и жизни веществ.
  • Материал имеет низкую паропроводимость, то есть он не является дышащим. Поэтому в помещениях, которые им утеплены, необходимо обязательно устраивать хорошую вентиляцию.
  • Еще одним минусом можно считать низкую стойкость к клеям и растворителям, изготовленным на органической основе. Это качество необходимо учитывать, выбирая составы для монтажа утеплителя. Полистирол может плавиться и растворяться от соприкосновения с органическими кислотами и спиртами, а также эфирами и гидрофобными растворителями, поэтому они не должны контактировать с плитами ЭППС. При несоблюдении этого условия пенополистирол может со временем «поплыть», дать усадку, и утепление сойдет на нет.
Видео: пример утепления балкона экструдированным пенополистиролом

Обычный пенопласт

Чаще всего все-таки для утепления используют обычный пенопласт, так как он имеет более низкую цену. Однако, нужно помнить и о том, что почти всегда цена предопределяет качество материала. Характеристики этого утеплителя во многом схожи с экструдированным пенополистиролом, но есть у них и значимые отличия.

Более дешевый вариант - панели обычного пенополистирола (пенопласта)Более дешевый вариант — панели обычного пенополистирола (пенопласта)

Пенопласт имеет более пористую структуру, состоит на 98% из воздуха и только на 2% — из вспененного полистирола. Его структура представляет собой отдельные гранулы, имеющие размеры от 4 до 15 мм, которые склеены между собой в процессе изготовления блоков.

Гранулы пенопласта россыпьюГранулы пенопласта россыпью

Толщина блоков материала может составлять от 20 и даже до 1000 мм, а размер плит варьируется обычно кратно 500 мм: 1000 × 500,1000 × 1000, 2000 × 1000 мм.

К достоинствам обычного пенопласта относят следующие его качества:

  • Низкую теплопроводность пенопласта можно назвать основным его преимуществом над многими другими утеплителями, в том числе — и над экструдированным пенополистиролом. Обычно этот показатель находится в районе всего 0,03 Вт/м×°С. Это качество достигается за счет чрезвычайно пористой структуры, которая способна защитить помещение от проникновения холода снаружи и сохранить внутри накопленное тепло.
  • Правильно установленный пенопласт способен предохранить балкон от ветра и от проникновения уличных звуков.
  • Пенопласт почти не гигроскопичен, так как способен поглотить минимальное количество влаги. Это может объясняться тем, что гранулы, которые подавляюще преобладают в общем объеме, полностью герметичны и не впитывают воду – она может только просачиваться в небольшие каналы между ними.
Панели пенопласта между лагам и направляющими обрешетки на балконеПанели пенопласта между лагам и направляющими обрешетки на балконе
  • Простота монтажа и легкость подъема материала на любой этаж здания. Пенопласт легко устанавливается и закрепляется на любой поверхности, его легко резать и подгонять под нужные размеры.
  • При обычной обработке (без использования термической резки) этот материал не выделяет никаких запахов и вредных веществ, поэтому для работающего с ним не потребуются средств защиты.
  • Пенопласт, так же, как и экструдированный пенополистирол устойчив к агрессивной щелочной и кислотной среде, цементу, извести и гипсу, солям и к краскам на водной основе.

К отрицательным качествам пенопласта можно отнести:

  • Низкую устойчивость к возгоранию. Чаще всего такой пенопласт маркируется, как горючий материал — Г4. Реже ему устанавливают слабую горючесть Г3 – в этом случае утеплитель стоит дороже, так как при их изготовлении использовались антипирены. Если же на упаковке вообще не проставлено обозначение горючести, или же материал обозначен, как полностью негорючий (чему верить нельзя), то не стоит приобретать такой пенопласт, так как неизвестно, чего от него можно ожидать.
Горящий пенопласт представляет чрезвычайно высокую опасностьГорящий пенопласт представляет чрезвычайно высокую опасность

При горении пенопласт плавится и стекает, выделяя очень опасные для человека газы, которые способны вызвать химический и термический ожог органов дыхательной системы. Кроме этого, вместе с дымом в воздух выделяются высокотоксичные вещества, которые быстро приводят к серьезному отравлению организма.

  • Изготовленный по заводской технологии пенопласт должен без потери своих качеств выдерживать температуру до + 75 градусов – порог, как видите, не слишком высокий.
  • Пенопласт со временем начинает химически разлагаться и выделять в помещение значительное количество опасных для человека веществ, которые способны проникать даже через кирпичные стены.
  • Материал нельзя оставлять открытым на длительный срок, так как ультрафиолетовые лучи способствуют его скорому разложению.
  • Материал подвержен воздействиям многих технических жидкостей, таких как скипидар, этиловый спирт, ацетон, бензин и др. Соприкасаясь с этими веществами, обычный пенопласт попросту растворяется в них.
  • Пенопласт, в отличие от экструдированного пенополистирола, трудно назвать особо прочным материалом, поэтому, если им утепляют пол, то для него требуется дополнительное укрепление в виде деревянных лаг или бетонной стяжки. Закрепленный на стене, а затем обшитый декоративным материалом, такой утеплитель должен прослужить без потери теплоизолирующих качеств порядка 15 ÷ 20 лет.

Минеральная вата

Вторым по популярности утеплителем для помещения балкона является минеральная вата, которая обладает отличными теплоизоляционными качествами. Существует несколько типов этого материала, изготовленного на разной сырьевой основе, и они несколько различаются между собой по некоторым техническим характеристикам.

Один из лучших термоизоляторов - минеральная ватаОдин из лучших термоизоляторов — минеральная вата
Наименование параметровШлаковатаСтекловатаКаменная вата
Предельная температура применения, °Сдо 250oт -60 до +450до 1000
Средний диаметр волокна, мкмот 4 до 12от 5 до 15от 4 до 12
Гигроскопичность материала за 24 ч. (не более),%1,91,70,095
Колкостьдаданет
Коэффициент теплопроводности, Вт/(м×°С)0,46-0,480,038 -0,0460,035-0,042
Коэффициент звукопоглощенияот 0,75 до 0,82от 0,8 до 92от 0,75 до 95
Наличие связующего, %от 2,5 до 10от 2,5 до 10от 2,5 до 10
Горючесть материала НГ — негорючиеНГ — негорючиеНГ — негорючие
Теплоемкость, Дж/кг×°С100010501050
Вибростойкостьнетнетнет
Упругость, %нет данныхнет данных75
Температура спекания, °С250-300450-500600
Длина волокон, мм1615-5016
Химическая устойчивость (потеря веса), % в воде7,86,24,5
Химическая устойчивость (потеря веса), % в щелочной среде766,4
Химическая устойчивость (потеря веса), % в кислотной среде68,738,924

Итак, минеральная вата обладает следующими положительными качествами, которые предопределяют ее удобство для утепления балконов и лоджий:

  • Низкая теплопроводность – минвата создает отличную преграду проникновению холода или жары.
  • Материал имеет достаточно прочную и одновременно – пластичную и упругую структуру.
  • При монтаже и в период эксплуатации утеплитель абсолютно не токсичен.
  • Минеральная вата обладает не только отличной теплоизоляцией, но и хорошо защищает помещение от посторонних шумов.
  • Любая минеральная вата имеет маркировку НГ, то есть материал не горюч.
  • Материал практически не подвержен деструктивному воздействию химических веществ.
  • Минеральная вата выпускается в рулонном варианте или в виде плит, что добавляет комфортности при монтаже.

К общим отрицательным качествам минеральной ваты относят:

  • Гигроскопичность – она может у некоторых типов минваты быть и не слишком высокой, но все равно потребует при монтаже покрытия гидропароизоляционным материалом.
  • Колкость материала, что доставляет неудобство при монтаже и потребует применения средств защиты кожи и органов дыхания. Исключением является каменная вата.

Другие достоинства и недостатки, характерные для каждого типа минеральной ваты, лучше рассмотреть отдельно, так как они несколько разнятся.

Стекловата

Стекловата состоит из волокон, изготовленных из песка или боя стекла, которые расплавлены при температуре 1450 ÷ 1500 градусов. Волокна имеют толщину всего 5 ÷ 15 мкм и длину в 15 ÷ 50 мм — именно они делают этот утеплитель упругим и прочным.

Стекловата - добротный утеплитель, но укладка требует особых мер осторожностиСтекловата — добротный утеплитель, но укладка требует особых мер осторожности

Стекловата обладает отменной стойкостью к химическим воздействиям, а также к развитию в ее структуре каких бы то ни было форм биологической жизни. При правильном монтаже она не подвержена гниению, а кроме этого в ней не селятся мыши и крысы, что очень важно для балконов, расположенных на первом этаже.

Стекловата в системе утепления балконаСтекловата в системе утепления балкона

Недостатком, который проявляется при монтаже этого утеплителя, является ломкость хрупких волокон. Обломки имеют острые края, поэтому они легко проникают через тонкую ткань одежды, могут воткнуться в кожу, попасть в глаза, а также их легко можно вдохнуть, что вызовет поражение дыхательных путей.

Чтобы избежать этих неприятностей, к работе по утеплению нужно тщательно подготовиться, приобретя одежду из плотного материала, перчатки или рукавицы, защитные очки и респиратор. Следует знать и то, что после завершения монтажа стекловаты, использованную одежду и рукавицы придется выбросить, так как отчистить их не удастся.

Базальтовая (каменная) вата

Каменную вату изготавливают из габбро-базальтовой и подобным ей группам минералов. Утеплитель имеет низкую теплопроводность и отличную стойкость к высоким температурам. Волокна каменной ваты способны выдержать температуру до 800 ÷ 1000 градусов, но связующие составы рассчитаны только на температуру до 200÷250 градусов, поэтому при их сгорании, каменные волокна распадаются. Впрочем, для условий балкона это определяющего значения не имеет.

Каменная вата - недостатков практически нетКаменная вата — недостатков практически нет

С этим типом ваты легко работать, так как она не имеет ломких волокон, поэтому безопасна для кожи, глаз и дыхательных путей.

Каменная вата является «дышащим» материалом, что бывает особо важно при утеплении внешних стен.

Этот материал вполне можно назвать экологически чистым, так как он не содержит и не выделяет вредных для организма человека веществ.

Стены балкона, утепленные каменной минватойСтены балкона, утепленные каменной минватой

Именно базальтовый утеплитель в полной мере отвечает названию «минеральная вата», и его можно назвать лучшим вариантом для утепления балкона. Тем более что сегодня производится каменная вата с фольгированным слоем, который усиливает утеплительный эффект.

Шлаковата

Шлаковату изготавливают из доменных шлаков. Она имеет достаточно высокую гигроскопичность, то есть легко впитывает влагу, что приводит к быстрой потере первоначальных утеплительных качеств.

Волокна шлаковаты не настолько ломкие, как у стекловаты, но эффект колкости присутствует, поэтому ее монтаж также следует осуществлять в соответствующей экипировке.

От использования шлаковаты в условиях квартиры лучше отказатьсяОт использования шлаковаты в условиях квартиры лучше отказаться

Еще один значимый минус – доменный шлак далеко не всегда отличается экологической чистотой, передавая этот «шлейф» и материалам на своей основе. Все это говорит о том, что использовать шлаковату для утепления жилых помещений все же не стоит.

Цены на минеральную вату

Минеральная вата

Керамзит

Керамзит — это насыпной материал, который отлично подойдет для утепления пола на балконе. Он обладает замечательными качествами, и основное из них — абсолютная экологическая чистота утеплителя. Его изготавливают из легкоплавких пород глины путем их очистки, тщательного перемешивания, формования и быстрого обжига при высоких температурах, достигающих 1250 ÷ 1300 градусов.

Керамзит различных фракцийКерамзит различных фракций

Данная таблица цифрами расскажет о характеристиках материала:

ПоказателиРазмер фракции
10-20 мм5-10 мм0-5 мм
Насыпная плотность, кг/м³280-370300-400500-700
Прочность при давлении, Н/мм² (МПа)1,0-1,81,2-2,03,0-4,0
Морозоустойчивость 20 циклов, потеря массы гравия в %0,4-0,20,2-1,2Не регламентируется
Теплопроводность Вт/м×°С0,09120,09120,1099
Водопоглощение, %10 - 1515 - 20до 25

Но, чтобы понять, насколько он подходит для утеплительных операций на балконе, следует рассмотреть все его качества подробнее.

Керамзит производится в виде гранул разного размера – это могут быть окатыши размером до 40 мм или более мелкой фракции – вплоть до керамзитового песка. Материал легок и прочен, влагостоек, что очень важно для пола на балконе, имеет низкую теплопроводность и хорошие звукоизолирующие свойства. Керамзит долговечен, он может эксплуатироваться хоть сто лет, не теряя своих положительных качеств.

Его легкий вес не утяжелит конструкцию балкона, а объемные мешки с утеплителем без труда можно поднять на высокий этаж. Кроме этого, он легко распределяется по поверхности основания с помощью граблей или обычной деревянной швабры.

Чтобы сохранить пол на балконе от влаги, рекомендовано первым слоем уложить именно керамзит, так как даже при возникновении конденсата от перепада температур на основании балкона, керамзитовый слой не позволит ему проникнуть в уложенный выше утеплитель.

Существует несколько способов утепления пола на балконе керамзитом. Материал можно использовать как в качестве единственного термоизолятора, так и в комплексе с другими материалами.

  • Первый способ заключается в засыпке керамзита на подготовленную поверхность между лаг, и закрытии этого утеплительного слоя половицами или толстой фанерой.
Сухая засыпка керамзита между лаг утепляемого полаСухая засыпка керамзита между лаг утепляемого пола
  • Другой вариант — это тщательно выравниваемый керамзитобетон, укладываемый между деревянных брусков-лаг. После его застывания, утепление можно усилить экструдированным пенополистиролом или другим утеплителем, нарастив лаги на нужную высоту.
Керамзит часто для большей стабильности слоя смешивают с цементным растворомКерамзит часто для большей стабильности слоя смешивают с цементным раствором
  • Третьим вариантом может стать насыпной пол, который часто по-другому называют «сухой стяжкой». Это выполняется с помощью керамзита мелкой фракции и гипсоволоконных плит.
Мелкий керамзит - основной утепляющий элемент "сухой стяжки"Мелкий керамзит — основной утепляющий элемент «сухой стяжки»

Подробную информацию об устройстве утепленного пола по технологии «сухой стяжки» можно узнать, обратившись к специальной статье портала, пройдя по ссылке.

Цены на керамзит

Керамзит

Напыляемый пенополиуретан

В последнее время многие хозяева прибегают к новому, современному способу утеплить балкон – напыление на стены пенополиуретана. Это чрезвычайно удобно — так как процесс его нанесения занимает всего лишь один день. Единственный недостаток этого метода утепления заключается в том, что его практически невозможно провести самостоятельно, так как для нанесения жидкого вспенивающегося материала на стены потребуется специальное оборудование и снаряжение, практические навыки. А стоимость подобных услуг остается достаточно высокой.

Благодаря мелкопористой структуре, у пенополиуретана - отменные утеплительные качестваБлагодаря мелкопористой структуре, у пенополиуретана — отменные утеплительные качества

Напыляемый пенополиуретан имеет солидное количество достоинств. И первым из них является то, после создания такого слоя можно не думать о дополнительных утеплителях – прямо поверх него после высыхания можно монтировать декоративную отделку.

Благодаря утеплительным качествам, быстроте, надежности и однородности нанесения, пенополиуретан можно назвать самым эффективным способом и утеплить, и звукоизолировать балкон:

  • При напылении пенополиуретана на поверхности стен, пола и потолка создается монолитное бесшовное покрытие, которое перекрывает абсолютно все мостики холода, вполне возможные при укладке иных термоизоляционных материалов. Балкон превращается в своеобразный термос, который в зимний период сохраняет внутри тепло, а летом – прохладу.
Балкон, утепленный напыленным пенополиуретаномБалкон, утепленный напыленным пенополиуретаном
  • Теплоизоляционные качества этого материала зависят от толщины напыления, все равно коэффициент теплопроводности – минимальный, составляет всего 0,020÷0,027 Вт/м×°С. Этот супер-показатель достигается за счет уникальной мелкоячеистой, заполненной воздухом структуры материала. Даже самый небольшой слой напыленного пенополиуретана способен дать эффект гораздо более толстых прослоек иных материалов.

Для сравнения толщины можно обратиться к данной схеме. На ней хорошо видно, какой толщиной должен быть уложены различные материалы, чтобы добиться одинаковой по эффективности теплоизоляции помещения.

Сравнение термоизоляционных качеств различных материаловСравнение термоизоляционных качеств различных материалов
  • Подобная термоизоляция имеет очень широкий температурный эксплуатационный диапазон – без ущерба для своих качеств и для здоровья человека  от — 150 до + 150 градусов.
  • Чтобы произвести напыление пенополиуретана на любые поверхности, их не нужно никак особо подготавливать – крепить обрешетку, создавать гидроизоляцию и т.п.
  • Утеплитель обладает высокой стойкостью к химическому воздействию, не является питательной средой ни для каких форм жизни.
  • Защищенные от ультрафиолетовых лучей, пенополиуретан не разлагается на составляющие. и сохраняет все свои термоизоляционные качества и физические характеристики 50 и более лет.
Назвать пенополиуретан абсолютно негорючим материалом, увы, не получаетсяНазвать пенополиуретан абсолютно негорючим материалом, увы, не получается
  • Нельзя забыть и о таком важном качестве, как горючесть материала. В его характеристиках часто можно встретить обозначения Г1 и НГ, но, к сожалению, это не вполне соответствует действительности. При длительном воздействии открытого пламени пенополиуретан может загореться, а продуты горения также представляют опасность для здоровья человека. Тем не менее, по пожаробезопасности он «на голову выше» пенополистирола любого типа.

Подробнее о технологии утепления с помощью пенополиуретана можно узнать из статьи, размещенной на страницах нашего портала

Существуют и другие термоизоляционные материалы, как изготовленные по современным технологиям, так и проверенные уже десятками лет. Так, утепление балкона практически никогда не обходится без использования тонкого рулонного материала – вспененного полиэтилена с одно— или даже двусторонним фольгированием (например, пенофола).

Рулон фольгированного пенополиэтилена - пенофолаРулон фольгированного пенополиэтилена — пенофола

Какой бы тип основного утеплителя ни применялся, поверх него рекомендуется уложить для большего эффекта слой пенофола, который помимо того, что сам имеет пористую структуру, еще и обладает свойством отражать тепловые потоки обратно, в сторону помещения (это было наглядно показано в приведенном выше видеоролике). В ряде случаев, когда слишком сильное утепление не требуется, такой материал может выступать даже в роли основного термоизолятора. Подробнее о характеристиках и об использовании рулонных фольгированных утеплителей можно узнать в соответствующей публикации портала.

Пенофол может применяться в качестве как дополнительного, так и основного утеплителяПенофол может применяться в качестве как дополнительного, так и основного утеплителя

Утеплители, о которых было упомянуто в статье, являются самыми популярными из продающихся в строительных магазинах и предлагаемых строительными компаниями, занимающимися утеплительными работами. Чтобы остановиться на одном из них или составить комплекс из нескольких материалов, нужно внимательно изучить не только их достоинства, но и отрицательные качества, чтобы обезопасить семью от возможных негативных последствий.

И в завершение – достаточно подробный видеосюжет про утепление балкона, который также поможет разобраться с выбором термоизоляционных материалов.

Цены на теплоизоляционные материалы

Теплоизоляционные материалы

Видео: Утепление балкона или лоджии. Самый простой способ. Теплый балкон

Теплоизоляция: типы, системы и стандарты

1. Типы теплоизоляции:

Исходя из функциональных требований, изоляционный материал подразделяется на 2 типа, как показано ниже

Горячая изоляция:

Изоляция, используемая на горячих поверхностях в целях сохранения тепла или в целях личной защиты.

В качестве горячего изоляционного материала обычно используются следующие материалы

Температура материала Теплопроводность
(мВт / см O C)
Допустимый диапазон
( O C)
Минеральная вата (несвязанная)

0.48 (Примечание 1)

600

Минеральная вата (связанная)

0,43 (Примечание 1)

750

Стекловата

0,43 (Примечание 1)

450

Силикат кальция

0,55

500

Примечания: 1) Теплопроводность при 50 O C

Изоляция холода:

Изоляция Используется на холодной поверхности в целях сохранения холода или во избежание конденсации.

В качестве холодных изоляционных материалов обычно используются следующие материалы

Температура материала Теплопроводность
(мВт / см O C)
Допустимый диапазон
( O C)
Пенополиуретан 0,29 (Примечание-1) -150 до 110
Пенополистирол из вспененного полистирола
Пенопласт из вспененного перлита
0.32 (Примечание-1) -150 до 80

Примечания: 1) Теплопроводность при 0 O C.

2. Система теплоизоляции

Изоляционный материал:

Обычно изоляционные материалы доступны в виде несвязанных матов и предварительно отформованных секций / плит труб со связкой или вспенением для различных применений. Пенополиуретан и вспененный перлит также можно использовать для вспенивания на месте.

Защитное покрытие:

Обычно теплоизоляция имеет внешнее покрытие для защиты от проникновения воды или технологической жидкости, механических повреждений, воздействия огня и ультрафиолетового разложения (в случае пеноматериала).Защитная крышка может быть в виде

.
  1. Покрытие (асфальт, полимер или смола)
  2. Мембрана (войлок или бумага)
  3. Листовой материал (ткань, металл или пластик)

Пароизоляция:

Системы изоляции

, работающие при отрицательных температурах (ниже 2 O C), обычно снабжены пароизоляцией и герметизированы на стыках для предотвращения конденсации и паропроницаемости. Для этой цели обычно используются металлическая фольга и заделанная мастикой стеклоткань.

Выбор толщины изоляции

Настоящий стандарт устанавливает рекомендуемую толщину труб различных размеров для следующих систем изоляции -

  1. Система трубопроводов с холодной изоляцией
  2. Система трубопроводов с горячей изоляцией
  3. Система индивидуальной защиты

Свойства изоляционного материала:

Изоляционный материал в целом должен быть химически нейтральным, устойчивым к гниению и свободным от примесей. Кроме того, при выборе изоляционного материала

необходимо учитывать следующие свойства.

Минеральная вата / стекловата

  1. Теплопроводность
  2. Плотность
  3. Огнестойкость (считается негорючей)
  4. Содержание хлоридов
  5. Содержание серы
  6. Поглощение влаги
  7. Содержание кадра
  8. Восстановление после сжатия
  9. Термостойкость

Пеноизоляция / Thermocole

  1. Теплопроводность
  2. Плотность
  3. Прочность на сжатие и твердость
  4. Паропроницаемость
  5. Автоматическое зажигание
  6. Огнестойкость
  7. Термостойкость

Заявка:

Следующие шаги выполняются при нанесении теплоизоляции на элементы трубопроводов / оборудования.

    Изоляционные опоры
  1. в виде кольца, проушины приварены к вертикальным резервуарам и резервуарам (для горячей и холодной изоляции).
  2. Горизонтальные сосуды не требуют изоляционных опор
  3. В случае сосудов с холодной изоляцией изоляция будет в 5 раз превышать толщину изоляции там, где есть выступы (например, юбки / опоры для ног и т. Д.). Опоры и кронштейны для оборудования с горячей изоляцией обычно не изолированы.
  4. Материалы, входящие в состав изоляционной системы (например,грамм. Цемент, покрытие, ткань и т. Д.) Не должны содержать асбеста, за исключением толстолистового картона, используемого для предотвращения контакта металла с металлом.
  5. Изолируемая поверхность из углеродистой и низколегированной стали должна быть окрашена (для защиты от коррозии) системой окраски в соответствии со Спецификациями окраски, рекомендованными для данной услуги.
  6. Изоляционные работы должны начаться только после завершения гидроиспытаний оборудования / трубопроводов и передачи предметов на изоляцию.
  7. Обычно изоляция наносится на всю металлическую поверхность, включая фланцы, кольца жесткости и т. Д.за исключением деталей (например, пластины сальника для сальника клапана и т. д.), которые требуют частого демонтажа с целью технического обслуживания.
  8. Насколько это возможно и практично, пустоты из-за профиля внешней поверхности любого объекта (например, корпуса клапана) должны быть заполнены неплотным изоляционным материалом.
  9. В случае холодной изоляции облицовка должна выполняться без использования саморезов, чтобы избежать разрушения пароизоляции. Однако это не относится к вспениванию на месте.
  10. Там, где это применимо, стыки между пароизоляцией и стальной поверхностью / облицовкой герметизируются во избежание проникновения влаги.
  11. В случае, если толщина изоляции превышает 75 мм, рекомендуется наносить изоляцию в несколько слоев.
  12. Изоляционный материал
  13. , используемый на технологических установках, на которых производятся азотная кислота или нитрат аммония, не должен содержать органических связующих материалов (например, фенольных смол).
  14. На производственных предприятиях с вероятной зоной образования летучих воспламеняющихся паров следует использовать только изоляционный материал с закрытой поверхностью (например, пеностекло).
  15. В случае нанесения утеплителя в несколько слоев швы должны быть расположены в шахматном порядке.
  16. Изоляционный материал на вертикальных или почти вертикальных поверхностях должен быть предотвращен от скольжения с помощью подходящих опор и стяжных проводов или бандажей.
  17. Близко расположенные трубопроводы (малое отверстие) или трубки могут быть изолированы в общей оболочке (до 6 линий)
  18. В случае изоляции линий электрообогрева рекомендуется разместить тепловой экран (металлическую фольгу) между изоляционным материалом и технологической трубой для лучшей теплопередачи и предотвращения проникновения изоляции между трассером и технологической трубой.
  19. Пароизоляционная пленка
  20. в случае холодной изоляции должна перекрываться (приблизительно 50 мм) в местах стыков.
  21. Установка изоляционного материала выполняется в следующие шаги:

Проставки:

и. Назначение прокладок - дать облицовке возможность сохранить свою форму и концентричность по отношению к изолируемой поверхности

ii. Прокладки требуются только для матов из минерального волокна или для вспенивания на месте

iii.Прокладки изготавливаются в соответствии с деталями, указанными в стандарте компании для изоляции

.

iv. Прокладки устанавливаются (фиксируются) на необходимом расстоянии на металлической / пластиковой поверхности в соответствии с деталями, указанными в стандарте компании для изоляции

.

v. В случае вертикального оборудования проставки крепятся к резервуарам с помощью изоляционных зажимов в соответствии со стандартом компании для изоляции

.

Изоляционный материал:

и. Изоляционный материал в случае матов из минерального волокна крепится к цилиндрической поверхности с помощью металлической проволоки, спирально обвязанной вокруг цилиндрической поверхности.

ii. Изоляционный материал в случае предварительно отформованной оболочки или плит из минерального волокна приклеивается к металлической поверхности или скрепляется стыковочными соединениями.

iii. Изоляционный материал в случае предварительно отформованных панелей и плит из пенопласта удерживается на месте путем склеивания торцевых швов. В случае многослойности швы должны быть расположены в шахматном порядке относительно друг друга.

iv. В случае вспенивания на месте пена образуется в полости, образованной между изолируемой металлической поверхностью и внешней облицовкой.

Упаковка:

В зависимости от контура изолируемой поверхности может возникнуть необходимость заполнить полости и пустоты с помощью рыхлых минеральных волокон или пенопласта того же типа.

Облицовка:

и. Стандартный листовой металл (оцинкованный) должен использоваться в качестве облицовочного материала. Алюминиевый лист может использоваться в качестве альтернативного материала (кроме установок по производству каустического хлора)

ii. Для крепления облицовки можно использовать металлические ленты или саморезы.Для соединения концов бандажа

можно использовать подходящие поворотные пряжки или защелки.

iii. Стыки облицовки должны быть герметизированы эластомерной уплотнительной лентой.

iv. Стыки облицовки изготавливаются опрессовкой или складыванием.

3. Применимые стандарты IS:

Стекловата IS 3677 / IS 3690

Каменная вата IS 8183 / IS 9842

Пенополиуретан IS 12436

Пенополистирол IS 4671

Определение теплопроводности IS 3346

Лист облицовки IS 737

Щелкните здесь для получения информации о теплоизоляции

.

Зависимость изоляции от тепловой массы []

планирование: тепловая_защита: тепловая_защита_работы: тепловая_защита_vs._thermal_storage

В некоторых публикациях, в том числе в различных статьях в Интернете, акцент делается на влиянии теплоаккумулирующей способности зданий, утверждая, что улучшение теплоизоляции внешних стен бессмысленно или даже вредно. Утверждается, что влияние теплоаккумулирующей способности стены и притока тепла от солнечного излучения учеными недостаточно или не принимается во внимание вовсе.

Автор этой статьи уже систематически занимался этой темой в 1987 году под тем же названием. Тем временем появилось много новых открытий, которые подтверждают данную публикацию. Полную (немецкую) версию приведенного здесь резюме можно заказать по следующей ссылке: [Feist 2000] Feist, Wolfgang: Ist Wärmespeichern wichtiger als Wärmedämmen? (Тепловыделение важнее тепловой защиты?) Passivhaus Institut, Darmstadt 2000

Основные факты

Последние исследования доказывают, что 1) вне всяких научных сомнений, что

  • Облучение внешних поверхностей стен в средний период нагрева обычно является незначительным эффектом с очень небольшим выигрышем в энергии, который еще больше снижается из-за теплового излучения в холодное небо.Однако пассивное использование солнечной энергии может быть значительно увеличено с помощью таких мер, как избирательное покрытие или прозрачная (полупрозрачная) изоляция.


Доказательства этих фактов предоставлены и подробно описаны в полной версии. Основные выводы следующие:

  • Для внешних компонентов здания эффективна изоляция, предотвращающая тепловые потери. Будь то внутренняя или внешняя - изоляция всегда эффективна. Однако предотвращение конструктивных мостов холода и воздухонепроницаемость необходимы для эффективного функционирования изоляции.

Определение теплового аккумулятора

Теплоемкость или удельная теплоемкость (это термин, используемый в физике) определяется как способность материала поглощать количество тепла в температурном градиенте. Мы давно используем этот эффект запоминания, например для грелки, бойлеров или водонагревателей. По сути, аккумулирование тепла не обеспечивает дополнительной энергии - каждое количество тепла, взятое из накопителя, должно изначально поступать в накопитель, т.е.грамм. нагревая воду для грелки.

Саморазряд

Неизолированная бутылка с горячей водой (та, которая не находится под хорошо изолирующим пуховым одеялом) за короткое время выделяет свое тепло и становится «бутылкой с холодной водой». На самом деле это хорошая изоляция, которая делает эффективное накопление тепла - в большей степени это относится к поддержанию тепла в зданиях. Срок хранения (более 3 месяцев) здесь намного больше, чем для грелки (8 часов).

Накопление тепла работает только в комбинации
с теплоизоляцией
:
Плохо изолированное накопительное устройство ( нормальный кофейник
, правый
) быстро теряет много тепла, которое
должно постоянно подаваться горячей плитой .
Хорошо изолированный контейнер для хранения ( слева, термос
колба
) сохраняет содержимое горячим в течение многих часов.
То же самое и для зданий зимой
(следующий рисунок).
На этом термографическом изображении слева показано неизолированное старое здание
(за деревьями) и здание, которое было модернизировано с утеплением фасада
справа (оштукатуренная теплоизоляция 20 см)
:
Справа слева (многоцветный) : неизолированная стена проводит тепло
к внешней поверхности, которая излучает тепло в окружающую среду.Об этом свидетельствует высокая температура поверхности
от 6 до 7 ° C.
Справа (темно-синий) : теплоизоляция значительно снижает поток тепла изнутри наружу
. Новая штукатурка
имеет низкую температуру ниже 4 ° C - почти не отличается от температуры
окружающих деревьев - что показывает, что потери тепла чрезвычайно малы.
Потери тепла через окна выше. А наклонное окно (вверху слева)
доказывает, что дом отапливается.

Тепловая защита и теплоаккумулятор дополняют друг друга

Оба описываются основным уравнением переноса тепла. Это известно в физике с 1822 года, когда Джозеф Фурье (страница в Википедии) предложил свой закон теплопроводности (страница в Википедии). Это уравнение описывает взаимодействие накопления тепла и теплопроводности в неподвижных материалах.

Уравнение теплопроводности в общей формулировке описывает изменение во времени температурного поля T (x, y, z) в неподвижном веществе (например,грамм. в твердом теле).

  • Различия в температуре (градиент град , справа) вызывают тепловой поток, который увеличивается пропорционально соответствующему компоненту тензора теплопроводности. 2) (- тепловой поток).
  • Это то же самое, что временное изменение температуры, умноженное на теплоемкость (левая часть уравнения).

Это уравнение доказало свою эффективность в физике и технике.Такие разные вещи, как теплопередача в звездах, в полупроводниковых устройствах, тормозных колодках и многие другие, могут быть рассчитаны в хорошей корреляции с измерениями. Это уравнение также применяется в строительной физике - и сделанные с его помощью расчеты точно так же соответствуют физическим измерениям здания, как показано в следующем примере.

Сегодня можно применить это дифференциальное уравнение с помощью математического программного обеспечения, например, для различных конструкций стен, и таким образом получить точное представление о колебаниях температуры, меняющихся во времени.Такие программы, как HEAT2 или HEAT3, могут делать это даже для двух или трех измерений. Рассчитанные таким образом значения очень хорошо соответствуют измерениям. То же верно и для процессов, меняющихся во времени.

Кроме того, программы моделирования (например, «Dynbil», «Derob», «Transys» и т. Д.), С помощью которых потоки энергии в элементах здания и зданиях вычисляются математически, в каждом случае полностью применяют коэффициент теплопроводности - они учитывают эффекты аккумулирования тепла, а также теплопроводность.С помощью этих численных методов расчета можно сделать три важных вывода:

  • Для обычных строительных компонентов оказывается, что в значительной степени эффект накопления тепла уже усредняется за период в несколько дней (см. Объяснение в следующем разделе).
  • «Косвенные» тепловые потоки в трех измерениях пространства еще более важны: эти так называемые эффекты теплового моста могут привести к большим дополнительным потерям тепла, поэтому их необходимо тщательно избегать, чтобы изоляция была эффективной.

  • При моделировании целых зданий с использованием закона Фурье пассивный дом оказывается особенно энергосберегающим решением для теплового комфорта как зимой, так и летом [Feist 1993].

Стационарное приближение

Если наблюдаются длительные периоды времени, приток и отток энергии для теплоемкости могут быть усреднены из энергетического баланса, поскольку должно быть сохранено такое же количество энергии, как и количество, которое снова доступно в конце, если температуры в начале и в конце одинаковы.

→ Как долго длится «длительный период времени»? Это зависит от рассматриваемой системы.


Такие массивные постройки непригодны для значительного хранения «в межсезонье». Усилия по ежегодному хранению для солнечных систем показывают требуемую массу (в основном много тонн воды) и огромные слои изоляции, необходимые для предотвращения саморазряда (500 мм и более высококачественного изоляционного материала - в этом случае также требуется только хранение можно с утеплением. Перспективным методом будет использование грунта под домом для хранения).

Стационарное приближение может успешно использоваться для обычных компонентов здания в ограждающих конструкциях здания, когда учитываются потери тепла в течение периода отопления, потому что тогда температуры в начале и в конце примерно одинаковы, а чистый баланс накопления равен нулю. Это приближение приводит к хорошо известному коэффициенту теплопередачи или U-значению (ранее - k-значению). Расчеты с использованием значения U достаточно точны для зданий разного типа; например, упрощенный метод Пакета планирования пассивного дома (PHPP) использует это приближение - и результаты хорошо согласуются с результатами измерений (см. страницу об энергетических балансах с PHPP).

Теория и практика (измерение)

Насколько хорошо теория и практика соотносятся в отношении теплопроводности, показывают температурные кривые измерений, записанных во время программы мониторинга пассивного дома в Кранихштайне. На двух графиках показаны измеренные значения (цветные символы). Результаты расчета на имитационной модели представлены черными линиями. Корреляция между измерением и теорией настолько хороша, что различия можно определить только путем увеличения изображения (увеличительное стекло).Любые отклонения составляют не более +/- 0,2 ° C.

Измеренные значения температуры в застройке стены повторно
представлены цветными символами, значения, рассчитанные на основе
уравнения теплопроводности, представлены черными линиями («теория»).
⇒ Теоретические и измеренные значения настолько хорошо согласуются друг с другом, что
отклонения не заметны на этой шкале, а
можно увидеть только на увеличенном изображении.
Увеличенная диаграмма:

Максимальное отклонение между расчетными значениями
(черные кривые) и измеренными значениями (цветные символы)
составляет 0,2 ° C. Это отклонение находится в пределах диапазона точности измерения
. 3)


Строение стены и положение высокоточных точек измерения датчиков Pt100 задокументированы в этой заметке 4) . Толщина изоляционного слоя составляла 275 мм.На основе этих результатов становятся очевидными многие другие характеристики изолированной стены - более подробное обсуждение этих характеристик можно найти в [Feist 1987], а также обсуждение на этой странице: Тепловая защита работает.

Напротив: общая теплоемкость салона оказывает влияние

Что подразумевается под (эффективной) внутренней теплоемкостью? Это общая теплоемкость, связанная с помещением через внутренние поверхности всех элементов здания внутри.Он находится внутри изоляционной оболочки, как жидкость внутри изолированной термоса. Эта теплоемкость смягчает изменения температуры в помещении, например из-за солнечного излучения через окна. В основной отопительный период это не очень важно, но летом, когда в основном необходимо уменьшить дневные пики температуры и возможно ночное охлаждение, внутренняя теплоемкость является предпочтительной. Хорошая теплоизоляция также полезна летом, поскольку она снижает проникновение тепла в комнаты.

Заключение и примеры

Важна изоляция, а не теплоемкость. Это верно не только для зданий , но и для многих других ситуаций повседневной жизни:

  • В холодных спальнях мы согреваем кровати с помощью «теплых» одеял. Конечно, само пуховое одеяло не теплое, оно просто очень теплоизоляционное, поэтому человеческое тело теряет меньше тепла.


Лучшим доказательством эффективности хорошей теплоизоляции является сам пассивный дом .Осенью пассивный дом остается теплым в течение длительного времени, так как теряет очень мало тепла из-за отличной теплоизоляции и рекуперации тепла . Даже если отопление требуется зимой, необходимая мощность отопления очень мала . Тысячи построенных примеров показывают, что эта концепция функционирует в соответствии с законами строительной физики. Хорошая изоляция зданий оказалась чрезвычайно успешной. В этом может убедиться каждый, например, приняв участие в экскурсиях во время Международной конференции по пассивным домам или в День пассивного дома, когда жители пассивных домов открывают свои двери для широкой публики, чтобы посетители могли сами испытать то, что это как жить в «пассивном доме».

Научный контекст может быть проверен кем угодно - для этого не требуется никаких полномочий со стороны Гуру. Между прочим, это самое главное требование, которое может быть предъявлено к серьезной научной работе : она должна быть проверяемой. Испытание также должно быть поддающимся проверке, граничные условия должны быть задокументированы, измерения должны выполняться с должной точностью (с помощью обычных комнатных термометров возможно измерение температуры только с точностью до 1 или 2 градусов). Не обязательно верить в физические взаимоотношения - вы можете проверить их сами.

Обучение через работу и действие

Обсуждаемая здесь тема очень подходит для школьных проектов. В среднем и шестом классе можно получить фундаментальное понимание физики и различий между экстенсивными свойствами (такими как энтальпия / внутренняя энергия) и интенсивными свойствами (температура), а также Первым законом термодинамики. Можно легко изготовить небольшие модели (например, ящики из изоляционного материала в качестве емкости с горячей водой), чтобы студенты могли самостоятельно проверить взаимосвязь - это тесно связано с повседневным опытом.Как сказал Альберт Эйнштейн по поводу образования и школы: « Персонажи формируются не тем, что они слышат и говорят, а их работой и действиями ».

См. Также

.

Теплоизоляция от Рона Куртуса

SfC Home> Физика> Тепловая энергия>

Рона Куртуса (редакция 14 ноября 2014 г.)

Теплоизоляция - это метод предотвращения передачи тепловой энергии от одной области к другой. Другими словами, теплоизоляция может поддерживать тепло в замкнутом пространстве, таком как здание, или сохранять внутреннюю часть контейнера холодной.

Тепло передается от одного материала к другому за счет теплопроводности, конвекции и / или излучения.Изоляторы используются для минимизации этой передачи тепловой энергии. В домашней изоляции R-value указывает, насколько хорошо изолирует материал.

Вопросы, которые могут у вас возникнуть:

  • Где используется теплоизоляция?
  • Как работает изоляция?
  • Что такое R-значение?

Этот урок ответит на эти вопросы. Полезный инструмент: Конвертация единиц



Где используется теплоизоляция

Если у вас есть объект или область, имеющая определенную температуру, вы можете не допустить, чтобы этот материал становился такой же температуры, как и соседние материалы.Обычно это делается с помощью теплоизоляционного барьера.

Например:

  • Если на улице холодно, вы можете защитить свою кожу, надев одежду, не пропускающую холод, а тепло тела.
  • Если в вашем доме летом внутри прохладный воздух, вы можете предотвратить повышение температуры до уровня горячего воздуха снаружи, хорошо изолировав дом.
  • Если у вас есть горячий напиток, вы можете не допустить, чтобы он стал комнатной температуры, поместив его в термос.

В любом месте, где есть материалы с двумя совершенно разными температурами, вы можете захотеть установить изолирующий барьер, чтобы один из них не стал такой же температуры, как другой. В таких ситуациях стараются минимизировать передачу тепла от одной области к другой.

Как работает изоляция

Изоляция - это барьер, который сводит к минимуму передачу тепловой энергии от одного материала к другому за счет уменьшения эффектов проводимости, конвекции и / или излучения.

Изоляционные материалы

В основном изоляция используется для предотвращения передачи тепла. В некоторых случаях радиация является фактором. Очевидно, что хороший изолятор - плохой проводник.

Менее плотные материалы - лучшие изоляторы. Чем плотнее материал, тем ближе расположены его атомы. Это означает, что передача энергии от одного атома к другому более эффективна. Таким образом, газы изолируют лучше, чем жидкости, которые, в свою очередь, изолируют лучше, чем твердые тела.

Интересным фактом является то, что плохие проводники электричества также являются плохими проводниками тепла.Дерево - гораздо лучший изолятор, чем медь. Причина в том, что металлы, проводящие электричество, позволяют свободным электронам перемещаться по материалу. Это увеличивает передачу энергии от одной области металла к другой. Без этой способности материал, например дерево, плохо проводит тепло.

Изоляция от проводимости

Проводимость возникает, когда материалы, особенно твердые, находятся в прямом контакте друг с другом. Атомы и молекулы с высокой кинетической энергией сталкиваются со своими соседями, увеличивая энергию соседа.Это увеличение энергии может проходить через материалы и от одного материала к другому.

от твердого до твердого

Чтобы замедлить передачу тепла от одного твердого тела к другому за счет теплопроводности, между твердыми телами помещают материалы с плохой проводимостью. Примеры включают:

  • Стекловолокно и воздух не являются хорошими проводниками. Вот почему пучки неплотно уложенных прядей из стекловолокна часто используются в качестве изоляции между внешней и внутренней стенами дома.
  • Проводящее тепло не может пройти через вакуум.Вот почему у термоса есть вакуумированная подкладка. Этот тип тепла не может передаваться от одного слоя к другому через вакуум термоса.
Газ - твердое вещество

Чтобы замедлить теплопередачу между воздухом и твердым телом, между ними помещен плохой проводник тепла.

Хорошим примером этого является размещение слоя одежды между вами и холодным наружным воздухом зимой. Если холодный воздух попадет на вашу кожу, она понизит ее температуру.Одежда замедляет потерю тепла. Кроме того, одежда предотвращает отвод тепла от тела и его потерю для холодного воздуха.

От жидкого до твердого

Точно так же, когда вы плаваете в воде, холодная вода может снизить температуру вашего тела за счет теплопроводности. Вот почему некоторые пловцы носят резиновые гидрокостюмы для защиты от холодной воды.

Изоляция от конвекции

Конвекция - это передача тепла при движении жидкости. Поскольку воздух и вода плохо проводят тепло, они часто передают тепло (или холод) своим движением.Пример тому - печь с вентилятором.

Изоляция от теплопередачи за счет конвекции обычно выполняется путем предотвращения движения жидкости или защиты от конвекции. Ношение защитной одежды в холодный ветреный день предотвратит потерю тепла из-за конвекции.

Изоляция от излучения

Горячие и даже теплые предметы излучают инфракрасные электромагнитные волны, которые могут нагревать предметы на расстоянии, а также сами терять энергию. Изоляция от передачи тепла излучением обычно выполняется с помощью отражающих материалов.

Бутылка-термос не только имеет вакуумную подкладку для предотвращения теплопередачи за счет теплопроводности, но также сделана из блестящего материала для предотвращения передачи тепла излучением. Излучение от теплой пищи внутри термоса отражается обратно в себя. Излучение от теплого внешнего материала отражается, чтобы предотвратить нагревание холодных жидкостей внутри бутылки.

R-ценность

R-значение материала - это его сопротивление тепловому потоку и показатель его способности к изоляции.Он используется как стандартный способ определить, насколько хорошо материал будет изолировать. Чем выше значение R, тем лучше изоляция.

Определение

R-значение обратно пропорционально количеству тепловой энергии на площадь материала на градус разницы между внешней и внутренней стороной. Единицы измерения R-значения:

(квадратный фут x час x градус F) / БТЕ в английской системе и

(квадратных метров x градусы C) / ватт в метрической системе

Стол

Изоляция для дома имеет R-значения обычно в диапазоне от R-10 до R-30.

Ниже приводится список различных материалов с английским значением R-value:

Материал

R-значение

Сайдинг из твердой древесины (толщиной 1 дюйм)

0,91

Гонт черепица (внахлест)

0,87

Кирпич (4 дюйматолстая)

4,00

Бетонный блок (заполненные стержни)

1,93

Ватин из стекловолокна (толщиной 3,5 дюйма)

10,90

Ватин из стекловолокна (толщиной 6 дюймов)

18,80

Плита из стекловолокна (толщиной 1 дюйм)

4.35

Целлюлозное волокно (толщиной 1 дюйм)

3,70

Плоское стекло (толщиной 0,125 дюйма)

0,89

Изоляционное стекло (0,25 дюйма)

1,54

Воздушное пространство (толщина 3,5 дюйма)

1.01

Свободный застойный воздушный слой

0.17

Гипсокартон (толщиной 0,5 дюйма)

0,45

Обшивка (толщиной 0,5 дюйма)

1,32

Справочник по гиперфизике Государственный университет штата Джорджия

Значение R пропорционально толщине материала. Например, если вы удвоили толщину, значение R удвоится.

Сводка

Используемая теплоизоляция сводит к минимуму передачу тепла во многих повседневных ситуациях.Это достигается за счет уменьшения эффектов проводимости, конвекции и / или излучения. Значение R является эталоном измерения этой изоляции.


Изолируйте себя от негативных мыслей


Ресурсы и ссылки

Полномочия Рона Куртуса

Сайты

Тепловая масса и R-показатель - Новости экологического строительства, апрель 1998 г.

Физические ресурсы

Книги

Книги по теплоизоляции с самым высоким рейтингом


Вопросы и комментарии

Есть ли у вас какие-либо вопросы, комментарии или мнения по этой теме? Если это так, отправьте свой отзыв по электронной почте.Я постараюсь вернуться к вам как можно скорее.


Поделиться страницей

Нажмите кнопку, чтобы добавить эту страницу в закладки или поделиться ею через Twitter, Facebook, электронную почту или другие службы:


Студенты и исследователи

Веб-адрес этой страницы:
www.school-for-champions.com/science/
Thermal_insulation.htm

Пожалуйста, включите его в качестве ссылки на свой веб-сайт или в качестве ссылки в своем отчете, документе или диссертации.

Авторские права © Ограничения


Где ты сейчас?

Школа чемпионов

Физические темы

Теплоизоляция

.

Теплоизоляция | Чипкин Системы автоматизации

Передача тепловой энергии от одного вещества к другому веществу обычно может происходить любым из следующих трех способов:

  1. По проводке
  2. Конвекцией
  3. По радиации

Теплоизоляция обычно действует как изолирующий барьер, предотвращающий передачу тепловой энергии любым из вышеперечисленных эффектов. «Теплоизоляция - это метод предотвращения выхода тепла из контейнера или попадания в него тепла.Другими словами, теплоизоляция может поддерживать тепло в замкнутом пространстве, таком как здание, или сохранять холод внутри контейнера ». 1
В основном применяется для изоляции зданий или элементов конструкций.

R-ценность

« R-value является обратной величиной количества тепловой энергии на площадь материала на градус разницы между внешней и внутренней стороной. Значение R пропорционально толщине материала. Например, если вы удвоили толщину, значение R удвоится.» 2
Это также называется термическим сопротивлением или номинальной температурой изоляционного материала. Это параметр, который используется для оценки термической способности изоляции. Он определяет величину сопротивления, оказываемого материалом тепловому потоку или передаче тепловой энергии. Для лучшей изоляции обычно предпочтительнее более высокое значение R. Факторы, от которых будет зависеть R-значение любого изоляционного материала, включают:

  • Вид материала
  • Толщина материала
  • Плотность материала

В случаях, когда установлено несколько слоев изоляционных материалов, значение R обычно вычисляется путем суммирования значений R отдельных слоев.Значение R обычно представлено в следующих единицах измерения:
В английской системе единицы , значение R (квадратные футы x час x градусы F) / БТЕ, тогда как

В метрической системе единиц это (квадратные метры x градусы Цельсия) / ватт.

Изоляционные материалы

Все изоляционные материалы должны удовлетворять следующим основным требованиям:

  • Им необходимо сохранять форму и прочность в любых условиях.
  • Они должны обладать соответствующей прочностью и надежностью.
  • Также они должны быть невосприимчивыми к атакам плесени и паразитов.
  • Они должны соответствовать критериям безопасности по защите от огня.

Некоторые важные факты, касающиеся изоляционных материалов, указаны ниже:

  • Чем менее плотен материал, тем лучше он изолятор. Это связано с тем, что атомы в материалах с высокой плотностью связаны друг с другом ближе друг к другу, что приводит к эффективной передаче энергии от одного атома к другому.
  • Жидкости считаются лучшими изоляторами, чем твердые тела, но не лучше, чем газы.
  • Идеальный изоляционный материал, который обеспечивает плохую проводимость тепла, всегда бывает также плохим проводником электричества. Например, древесина, не проводящая электричество, обеспечивает лучшую изоляцию, чем медь.

Преимущества

Использование теплоизоляции в здании дает следующие преимущества:

  • Он поддерживает температуру стен, потолка и пола более высокую в зимний период и достаточно прохладную в летнее время.
  • Он создает очень расслабляющую и комфортную атмосферу в нашем доме, поддерживая постоянную температуру во всем доме.
  • Помогает экономить деньги и дефицитные энергоресурсы нашей страны.

Виды изоляции

Ниже приведены наиболее часто используемые теплоизоляционные материалы:

  1. Сыпучая изоляция
  2. Утеплители и одеяла
  3. Изоляция из жестких плит
  4. Изоляционная пена

Пригодность типа изоляции обычно зависит от:

  • Вид конструкции
  • Сумма предлагаемого ремонта здания
  • Соответствующие требования кода

Вышеупомянутые различные типы изоляции могут использоваться совместно в здании.Например, можно легко положить ватную или рулонную изоляцию поверх неплотной изоляции и наоборот. В общем, всегда гарантируется, что изоляционные материалы высокой плотности не укладываются поверх материалов более низкой плотности. Это необходимо, потому что толщина менее плотных материалов имеет тенденцию уменьшаться после сжатия под весом материалов с высокой плотностью. Уменьшение толщины приведет к снижению их R-ценности или тепловых характеристик. Однако из этого элементарного правила существует исключение. В случаях, когда температура на чердаках опускается ниже 0 ° F, некоторые из изоляционных материалов с низкой плотностью могут обеспечивать циркуляцию воздуха между гребнем потолка и полом.Этот поток воздуха очень сильно влияет на характеристики изоляции. Можно искоренить это движение воздуха, просто нанеся слой изоляционных материалов высокой плотности поверх изоляции низкой плотности. Ватины, рулоны, одеяла, насыпные наполнители и пенопласт с низкой плотностью - все эти формы изоляции обычно работают, ограничивая поток воздуха внутри здания, потому что воздух, когда он не движется, действует как идеальный изолятор. Кроме того, существуют некоторые исключительные газы, которые при добавлении к пенопластам, таким как полиизоцианурат, полиуретан и экструдированный полистирол, приводят к лучшей термической стойкости.

Выбор типа изоляции

При выборе типа изоляции для конкретного применения необходимо учитывать следующие моменты:

  • Определитесь с количеством изоляции, необходимой для этой цели.
  • Определите легкость доступа к месту изоляции.
  • Учитывайте наличие места для изоляции.
  • Учитывать наличие и стоимость типа изоляции.

Тем не менее, есть еще несколько соображений, которые являются исключительными для каждого покупателя.Делая выбор среди различных изоляционных материалов, необходимо убедиться, что для сравнения учитываются одинаковые значения R. Эффективность изоляции во многом зависит от правильной процедуры установки.

Прочие виды изоляции

Некоторые другие типы теплоизоляции включают:

  1. Непрозрачная теплоизоляция: Эти типы теплоизоляции включают в себя изолирующие компоненты с вакуумом или без него.В вакуумированных частях передача тепла происходит только за счет излучения. Следовательно, вероятно получение лучших коэффициентов теплопередачи, то есть значений U с учетом толщины изоляционного слоя. Было обнаружено, что значение теплопроводности изоляционных материалов в вакууме намного меньше, чем у невакуумированных материалов. Кроме того, использование эвакуированных панелей связано с высокими производственными затратами. Таким образом, их использование ограничено лишь несколькими приложениями.
  2. Прозрачная теплоизоляция: Этот тип теплоизоляции пассивно использует солнечную энергию на внешних стенах.Солнечные лучи с более короткой длиной волны способны проходить сквозь прозрачный изоляционный материал. Пройдя через прозрачный утеплитель, они попадают в перегородку стены сзади и нагревают ее. Теперь из перегородки излучается длинноволновое излучение, то есть инфракрасное излучение, которое не имеет возможности проходить через изолирующий слой, поскольку прозрачный теплоизоляционный слой ведет себя как непрозрачный слой для таких типов излучения. «В зависимости от температуры окружающей среды нагретая внешняя поверхность стены приводит к уменьшению потерь при передаче или даже к усилению передачи через стену.В обоих случаях потребность в тепловой энергии снижается за счет использования прозрачной теплоизоляционной конструкции ». 3
  3. Теплоизоляция зеленой крыши: Это тип теплоизоляции, в котором в основном используются теплоизоляционные свойства растений. Размещение слоев растений создает изолирующий барьер, который действует как защита от ветра, сводит к минимуму циркуляцию воздуха и снижает потери тепла за счет конвекции. Изоляция зеленой кровли в основном находит свое применение для уменьшения эффекта перегрева здания, возникающего в летний сезон.

Типы реализации

Три возможных способа установки изоляционного слоя внутри здания указаны ниже:

  1. Внешняя теплоизоляция: Это наиболее предпочтительный тип реализации среди всех. При этом образуется интегрированная система изоляции, то есть тепловая оболочка, лишенная каких-либо зазоров, которая охватывает все здание. Изоляция по периметру - это особый вид внешней теплоизоляции.
  2. Внутренняя теплоизоляция: Этот тип реализации в основном подходит для ремонта
  3. Теплоизоляция сердечника: Эта реализация подходит как для ремонта старых зданий, так и для новых построек.Изоляция жилы обычно устанавливается в полости стены.

Список литературы

1. Теплоизоляция
2. Показатель R
3. Прозрачная изоляция

Источники

ORNL
Школа чемпионов
Nesa1

.

Смотрите также